THE RADIO EXPERIMENTER'S MAGAZINE # INSPECT, COMPARE # We are confident of your approval This new 7-tube short-wave super-heterodyne, designed originally for amateur phone reception, with professional design details, offers the short-wave broadcast listener and the experimenter exceptional distance, selectivity, stability and tone quality in the reception of short-wave broadcasts. From such a receiver, National-built, one expects remarkable performance, and gets it. With its strictly single control tuning, front-of-panel coil changing, full vision dial and single-hand control of tuning and volume, the National FB-7 gives you a simplicity and convenience of operation heretofore not available at such a reasonable price. # FB-7 SPECIFICATIONS FB-7 SPECIFICATIONS THE CIRCUIT . . 7 tubes: one 57, two 24's, two 58's, one 56, and one 59 . Electron Coupled Oscillators . Separate Oscillator for CW least frequency giving "semi-single signal" or "off-set" tuning . . High efficiency Litz wound IF Transformers . . Class A Power Pentole Output . . R-30 Coil Forms with grounded metal shield handles . Band Spread Coils available for 20, 40, 80 and 160 meter amateur lands, each covering 100 full dial divisions . . Standard coils for continuous coverage from 20 MC to 1500 KC . . No frequency drift . . Double Shielding . . May be used with efther conventional antenna or "doublet" with transposed transmission-line lead-in. THE CHASSIS . Single Control Tuning. (No trimmers) . . . Full Vision Dial with SFL 270° condenser . . Front-of-panel coil changing, without disturbing shielding . . CW Beat Oscillator Switch on panel . . Front-of-Panel Switch for "entiting" B voltages during transmission . . . Phone Jack-connecting ahead of finat audio stage . . Calibrated Volume control located under tuning knob, for one-hand operation—gain control calibrated in R units . All fixed adjustments, such as 1.F. peaking, accessible from top without removal of chassis from cabinet. ### SINGLE SIGNAL OPERATION Both the circuit and the chassis layout have been designed for ready addition of mechanical filter (quartz crystal) when desired for full "single signal" operation. ## MADE FOR AC POWER-SUPPLY The FB-7 is designed to be operated by filament transformer and B-batteries, or the National 5887 or 5880 Short-Wave Power Units. Where the maximum undistorted power output is desired for short-wave broadcast reception, the National 5897 is recommended, which furnishes voltages sufficient to drive the type 59 power output pentode at full rating. R. C. A. Licensed. # SEND IN THE COUPON BELOW Free particulars and prices on the new NA-TIONAL FB-7 will be sent you on receipt of 6c in stamps to cover mailing costs. # NEW NATIONAL FB-7 SHORT-WAVE RECEIVER ATIONAL COMPANY, INC. Sherman Street, Malden, Mass. Address Gentlemen: Please send me your new catalogue sheets giving full description of the new FB-7 Short-Wave Super and your new Short-Wave Parts. I enclose 6c in stamps to cover mailing tools. | Name | | |------|--| SWC-5-33 # will train you at home to fill a BIG PAY Radio Job # Made \$10,000 More in Radio "I can safely say that I have made \$10,000 more in Radio than I would have made if I had continued at my old job." VICTOR L. OSGOOD, St. Cloud Ave., West Orange, N. J. # Runs Successful Radio Business "I am a member of the firm of South Grand Radio & Appliance Co., which runs a very successful business. The greater part of my success I owe to N. R. I. Without your training, I could never have been successful in Radio." J. A. VAUGHN, Grand Radio & App. Co., 3107 S. Grand Blvd., St. Louis, Mo. # Does Radio Work In Spare Time "I am operating a 120-acre farm. Three nights a week I teach a Radio class. On the other nights I make service calls. Words cannot express my gratitude to N, R. I. Your training pre-pared me to earn nice sums of cash in spare time." HOYT MOORE, R. R. 3, Box 919, Indianapolis, Ind. If you are dissatisfied with your If you are dissatisfied with your present job, if you are strugging along in a rut with little or no prospect of anything better than a skinny pay envelope—clip the coupon NOW. Get my big FREE book on the opportunities in Radio. Read how quickly you can learn at home in your spare time to be a Radio Expert—what good jobs my graduates have been getting—real jobs with real futures. Many Radio Experts Make \$50 to \$100 a Week Many Radio Experts Make \$50 to \$100 a Week Many Radio Experts make 550 to 5100 a Week 2,000,000 to hundreds of millions of dollars. Over 300,000 jobs have been created by this growth, and thousands more will be created by its continued development. Many men and young men with the right training—the kind of training I give you in the N. R. I. course—have stepped into Radio at two and three times their former salaries. Get Ready Now for Jobs Like These Get Ready Now for Jobs Like These Brondcasting stations use engineers, operators, station managers and pay up to \$5,000 a year. Manufacturers continually employ testers, inspectors, foremen, engineers, service men, buyers, for jobs paying up to \$6,000 a year. Radio operators on ships enjoy life, see the world, with board and lodging free, and get good pay besides. Dealers and jobbers employ service men, sulesmen, buyers, managers, and pay up to \$100 a week. My book tells you about these and many other kinds of interesting Radio jobs. The day you enroll with me I send you instructions which you should master quickly for doing 28 jobs common in most eyery neighborhood, for spare-time money. Throughout your course I send you information on servicing popular makes of sets. I give you the plans and ideas that have made \$200 to \$1,000 a year for N. R. I. men in their spare time. My course is famous as the course that pays for itself. # Talking Movies, Television, Short Wave Money-Back Agreement Included Recial training in Talking Movies, Television, and Home Television experiments. Short Wave Radio, Radio's use in Aviation. Servicing and Merchandising Sets. Broadcasting, Commercial and Ship Stations are included. I am so sure that N. R. I. can train you satisfactorily that I will agree in writing to refund every penny of your tuition if you are not satisfied with my Lesson and Instruction Service upon completion. #### [64-page Book of Information FREE Get your copy today. It's free to all residents of the United States and Canada over 15 years old. It tells you where Radio's good jobs are, what they pay, tells you about my course, what others who have taken it are doing and making. Find out what Radio offers you without the slightest obligation. ACT NOW! J. E. SMITH, President National Radio Institute, Dept. 3EB3 Washington, D. C. S in the second Our Own Home Pioneer and World's Largest Home-Study Radio training organization devoted entirely to training men and young men for good jobs in the Radio industry. Our growth has paralleled Radio's growth. We occupy three hundred times as much floor space now as we did when organized in 1914. # SPECIAL FREE OFFER Act now and receive in addition to my big free book. "Rich Rewards in Radio," this Service Manual on D.C.. A.C., and Battery operated sets. Only my students could have this book in the past. Now readers of this magazine who mail the coupon will receive it free. Overcomings hum noises of all kinds. fadings signals, broad tunings, howle and oscillations, poor distance reception distorted or muffled signals, poor Audio and Radio Frequency amplification and other vital service information is contained in it. Get a free copy by mailing the coupon below. ACT NOW. # SPECIAL Radio Equipment for Broad Practical Experience Given Without Extra Charge My course is not all theory. I'll show you how to use my special Radio equipment for conducting experiments and building circuits which illustrate important principles used in such well-known sets as Westinghouse, General Electric, Philoco. R. C. A., Victor, Majestic, and others. You work out with your own hands many of the things you read in our lesson books. This 50-50 method of training makes as learning at home easy, interesting, fascinating, intensity. I have doubled and tripled the salaries of many. Find out about this tested way to BIGGER, Get a Job with a Future, FILL OUT AND MAIL THIS COUPON ODAY M J. E. SMITH, President National Radio Institute, Dept. 3EB3 Washington, D. C. Dear Mr. Smith: I want to take advantage of Your Special Orier. Send me your manual "Trouble Shooting in D.C., A.C. and Battery Sets" and your book "Rich Rewards in Radio." I understand this request does not obligate me. | NameAge | | |---------|--| |---------|--| The Famous Course That Pays For Itself IN THIS ISSUE: PROMINENT SHORT-WAVE AUTHORS Hertzberg • Denton • Worcester • Appelman • Tanner • Doerle • Palmer HUGO GERNSBACK Editor 67 8 9 H. WINFIELD SECOR **Managing Editor** # CONTENTS FOR MAY, 1933 # Editorial-What Short-Wave Cat Shall I Gata SI | The short wave bet blian I Get! by | |
--|-------| | Hugo Gernsback C. B. S Uses Short Waves in Inaugural Broadcast Short-Wave Sets That Fly! Short-Wave Record Set by League Report, by H. Winfield Secon | 5 | | Short Wave Sets That Blad In Inaugural Broadcast | 6 | | Short-Wave Deep I hat Fly! | 7 | | Winfield Secor | | | Winfield Secor The "Beginner's Twin" SW Receiver, by "Bob" Hertz- | 8 | | | ^ | | New! "Both Ends" of Radiophone Talk Can Now
Be Heard on This New "Dual Wave" S-W Receiver, | 9 | | Be Heard on This New "Dual Wave" S. W Rocciver | | | by C. E. Denton and Leslie W. Orton | 10 | | by C. E. Denton and Leslie W. Orton | 13 | | Building a 2-Tube "OSCILLODYNE," by J. A. Wor- | 10 | | cester, Jr. | 14 | | cester, Jr. \$500.00 Prize Contest for the Best Title to this month's cover | | | A 3-Tube "Stand-by" from a Redick V by Tayer A 3-Tube "Stand-by" from a Redick V by Tayer | 16 | | An improved Super-Regenerator, by J. A. Grater | 17 | | A 3-Tube "Stand by" from 5 P. H. by R. E. Thayer | 18 | | A 3-Tube "Stand-by" from a Radiola V, by A. R. | 0.0 | | Appelman The "Easy-Build" S-W Super-Regenerator, by Clifford E. Denton A 2-Volt 3-Tube "Ham" Receiver, by Lewis M. Ewing, W8ECH How to Get Licenses for Amateur Radio Stations | 20 | | E. Denton | 00 | | A 2-Volt 3-Tube "Ham" Receiver, by Lowis M. Fwing | 22 | | W8ECH | 27 | | How to Get Licenses for Amateur Radio Stations | 4 | | How to Get Licenses for Amateur Radio Stations, by "Bob" Hertzberg Building a "Depression" Transmitter, by John T. Frye, W9EGV The FBX "Single Signal" S-W Receiver—created by National | 28 | | Building a "Depression" Transmitter, by John T. | | | Frye, W9EGV | 29 | | The FBA "Single Signal" S-W Receiver—created by | | | Puloe in coo oo Marthle 4D + C + C | 31 | | The Short Ways Paging and Heat Set" Contest | 31 | | Less" 3-Tube S. W. Possiver of the Simulation | | | C. W. Palmer | | | Less" 3-Tube S-W Receiver, of the Simplest Type, by C. W. Palmer Short-Wave Stations of the World—A New REVISED | 32 | | LIST | 36 | | HODT WAVE DECEMBED | 30 | | HORT-WAVE RECEIVERS: | | | NEW YORK TIMES Receiver Used in Picking Up "League of Nations" Report The "Beginner's Twin"—A 2-Tube Receiver, by Robert "Bob" Hertzberg | | | League of Nations" Report | 8 | | "Roh" Hartsham A 2-Tube Receiver, by Robert | | | "Bob" Hertzberg New "Dual Wave" Receiver—You Can Now Hear "Both Ends" of a Radiophone Conversation, by C. E. Denton and Leslie W. Orton | 9 | | "Both Ends" of a Radiophone Conversation | | | C. E. Denton and Leslie W. Orton | ^ | | An "Inductive" S-W Tuner The 2-Tube "OSCILLODYNE"—12,500 Mile "Loud Speaker" Reception on 2-Tubes Verified by the Editors 1 | .0 | | The 2-Tube "OSCILLODYNE"-12.500 Mile "Loud Speak | 3 | | er" Reception on 2-Tubes Verified by the Editors 1 | A | | An Improved Super-Regenerator 1 A 3-Tube "DX'ER" That Hauls 'em In 1 A 3-Tube "Stand-by" Made from a Radiola V. 2 The "Easy-Build" S-W Super-Regenerator by G. 7 | | | A 3-Tube "DX'ER" That Hauls 'em In | | | A 3-Tube "Stand-by" Made from a Radiola V. 20 | _ | | Donton Duper Regenerator, by C. E. | | | Denton | 2 | | Improving the Short Ways Constitution 2 | 4 | | A "Cash Box" Receiver Improving the Short-Wave Converter, by R. W. Tanner A Simple Short-Wave Adapter | | | A Simple Short-Wave Adapter | 4 | | A 2-Volt 3-Tube "Ham" Receiver | 0 | | A Simple Short-Wave Adapter 26 A 2-Volt 3-Tube "Ham" Receiver 27 The New National FBX "Single Signal" S-W Receiver 31 A "Plug-Less" 3-Tube Receiver—How to Build a Simple Type, by C. W. Palmer 32 | 1 | | A "Plug-Less" 3-Tube Receiver—How to Ruild a | L | | Simple Type, by C. W. Palmer | 2 | | | and . | # FEATURES IN NEXT ISSUE A 3-Tube Band-Spread "Loud Speaker" Set, by George W. Shuart, W2AMN-W2CBC. A "TNT" Transmitter for 160 Meters, by Hal Sullivan, W1AAD. A "Hum-less" Power Supply, by Jess M. Reed. The Ideal "COMPOSITE" Receiver, by Clifford E. Denton. A Plate Supply Unit Built Around the New 25Z5 Tube. The Super-Wasp Becomes a "Super-het," by William J. Vette. How to Make a "Bug" Speed Key. The 3-Tube "OSCILLODYNE"—With a Stage of R. F., by J. A. Worcester, Jr. # Contents for MAY-Continued ### SHORT-WAVE TRANSMITTERS: Short-Wave League Short-Wave QUESTION BOX Amateurs Who Made Good.... | THE THE PARTY OF T | | |--|----------| | How to Get a License for Your Amateur Station, by
Robert Hertzberg | 28 | | | 29 | | by Walter C. Doerle | 30 | | FOR THE BROADCAST LISTENER: | | | Improving the Short-Wave Converter A Simple Short-Wave Adapter | 24
26 | | MISCELLANEOUS: | 20 | | Short Waves in England, by L. H. Thomas, G6QB | 7 | | Tying Down the Audio Amplifier A Coupling Stage for "Plug-Less" Super | 25 | | Making a Switch to Change Bands | 26
26 | | How to Learn the Radio Code | 30 | | | 34
35 | | | | # **OUR COVER** This month's cover is a "human interest" idea caught in fine spirit by our artist, Mr. Howard V. Brown. \$500.00 in prizes are offered for the best title for this month's cover. See page ... #### COPYRIGHT, 1933, BY H. GERNSBACK # Published by POPULAR BOOK CORPORATION HUGO GERNSBACK; President - H. W. SECOR, Vice-President Chicago Adv. Office - L. F. McCLURE, 737 No. Michigan Blyd. Publication Office - 404 N. Wesley Avenue, Mount Morris, Ill. Editorial and General Offices - 96-98 Park Place, New York, N. Y. London Agent: HACHETTE & CIE., 16-17 King William St., Charing Cross, W.C.2 Paris Agent: HACHETTE & CIE., 111 Rue Reaumur Australian Agents: McGILL'S AGENCY, 179 Elizabeth St., Melbourne SHORT-WAVE CRAFT—Monthly. Entered as second class matter May 7, 1930, at the post office at Mount Morris, Illinois, under the act of March 3, 1879. Trademarks and copyrights by permission of H. Gernsback, 98 Park Place, N. Y. C. Text and illustrations of this magazina are copyrighted and must not be reproduced without permission. SHORT WAVE CRAFT is published on the 15th of every month. Twelve numbers per Year. Subscription price is \$2.50 a
year in the United States and possessions. Canada and foreign countries, \$3.00 a year. Single copies 25c. Address all contributions for publication to Editor, SHORT WAVE CRAFT, 96-98 Park Place. New York, N. Y. Publishers are not responsible for lost manuscripts. Contributions cannot be returned unless authors remit full postage. SHORT WAVE CRAFT is for sale at all principal newsstands in the United States and Canada. European agents: Brentano's, London and Paris. Printed in U. S. A. Make all subscription checks payable to Popular Book Corporation. # SCOTT TAKES 20,000-MILE CRUISE TO GIVE RADIO ANOTHER HARD TEST E. H. Scott, designer and builder of the famous Radio Receiver bearing his name, boards the SS. Maunganui to start 20,000-mile cruise. # WORLD-WIDE RECEPTION GUARANTEE BASED ON CONSISTENT PERFORMANCE Backing the Scott All-Wave Deluxe Radio with a positive guarantee of consistent world-wide reception, with loud speaker volume, of foreign stations 10,000 miles or more distant, was not justified by scientific laboratory tests alone. Rather such tests, under actual owner-operated conditions, as the reception in Chicago of every program broadcast from VK2ME and VK3ME in Australia (9,500 miles distant) throughout an entire year's time, were considered more conclusive. Likewise were the more than 19,000 verified foreign reception logs submitted by Scott owners within a six months' period contributory to the # DA C I P C GAN PRODUCTION CONTRACTOR CONTRAC Here is the route of E. H. Scott's long cruise, undertaken to test_reception under most difficult conditions. maker's decision to back his receiver with such a startling warranty. On his present 20,000-mile experimental cruise Mr. Scott will cover many localities where radio reception is extremely difficult. He is wholly confident that even in these so-called "dead spots" his set will function perfectly for him as it is doing for many owners in places where radio reception was always before considered impossible. # Research To Prove Perfection Of Scott All-Wave Deluxe E. H. Scott, whose genius created the marvelous SCOTT ALL-WAVE DE-LUXE RADIO, sailed recently on an adventurous 20,000-mile voyage to give his receiver still another series of gruelling reception tests. Thousands of miles from any land the SS. Maunganui plows her way down the trackless Pacific enroute to New Zealand. Her passengers are gay as they gather in the luxurious Grand Salon each evening. They enjoy an excellent dance orchestra's rhythms. The tunes come from a loudspeaker that reproduces the music of orchestras six or seven thousand E. H. SCOTT miles away, back in "the States." To E. H. Scott, and the world's-record-shattering receiver which he designed and builds, must go all the credit for this exceptional feat. But bringing music, daily news flashes and other radio treats to the Maunganui's company is but a small part of the thorough research Mr. Scott is carrying on during his cruise to test his receiver. From his experimentation with the Scott All-Wave Deluxe, which is his most important piece of baggage, will come new inspiration and still further justification of the consistent world-wide reception guarantee under which this radio known as "The World's Finest Receiver" is sold. The radio-wise will watch with interest for final reports of Mr. Scott's research. They confidently expect news of the breaking of still more reception records as one outgrowth of this long trek. # WORLD-TRAVELING RECEIVER This Scott All-Wave Deluxe Radio which Mr. Scott is using on his research trip is an exact duplicate of the custom-built sets sold to discriminating buyers. It receives broadcasts on all wave lengths between 15 and 550 meters. Of true one-dial type, it uses no trimmers or auxiliary tuning dials, and has no plug-in or tapped coils or other old-fashioned wave band-changing devices. It is equipped with automatic volume control, visual tuning, static reducer, and every new scientific betterment of proved value. Despite its tremendous distance range, high selectivity, absolutely natural tone, and general excellence, it is sold at a remarkably moderate price. # ENTHUSIASTIC OWNERS CONTINUE TO LAUD PERFORMANCE OF ALL-WAVE DELUXE Letters expressing perfect satisfaction with the marvelous Scott All-Wave Deluxe Radio pour into the Scott Laboratories daily. Here are excerpts from a few recent ones: "Most sensitive radio I have ever seen," SGP, Ala... "Nothing finer in tone—in fact, perfect in every way," FW, Calif... "Stations all the way from Berlin to Tokio and Australia,"... JBT, Conn...: "Foreign reception every day. France best—Rome, England, Germany and Spain come in very good," RPH, Conn... "Tone cannot be improved—it is already perfect," GL, N. Y... "Australia with the volume of a local station," Dr. HPC, N. Y... "Amazed at results—would not take \$500 in exchange for it," JLH, Pa. If you would like such a set—the ultimate in radio ability—why not send NOW for all details regarding it? # SEND COUPON AT ONCE! | E, H, Scott R | | | |-------------------|-------------------|--------------------| | 4450 Ravenswood | ve., Dept. 8WC | -53, Chicago, III. | | Send me all det | ails regarding th | SCOTT ALL | | WAVE DELUX | | | | data, performance | proofs and price | s. This is not to | | obligate me. | | | | Name | | *************** | | | | | | Address | | | | | | | | Town | Stal | C | # LEARN RADIO IN 10 WEEKS! # PAY FOR YOUR TRAINING AFTER YOU GRADUATE I am making an offer that no other school has dared to do. I'll take you here in my shops and give you this training and you pay your tuition after you have graduated. Two months after you complete my course you make your first payment, and then you have ten months to complete your payments. There are no strings to this offer. I know a lot of honest fellows haven't got a lot of money these days, but still want to prepare themselves for a real job so they won't have to worry about hard times or lay offs. I've got enough confidence in these fellows and in my training to give them the training they need and pay me back after they have their training. If you who read this advertisement are really interested in your future here is the chance of a life time. Mail the coupon today and I'll give you all the facts. A scene in the big, busy Radio Shops at Coyne. Here you see fellows working on real Radios—not reading about them from books or lessons. This is THE way to prepare for the bigmoney field of Radio! # TELEVISION and TALKING PICTURES Television is already here! Soon there'll be a demand for THOUSANDS of TELEVISION EXPERTS! The man who learns Television now can have a great future in this great new field. Get in on the ground-floor of this amazing new Radio development! Come to COYNE and learn Television on the very latest, newest Television equipment. Talking Picture and Public Address Systems offer opportunities to the Trained Radio Man. Here is a great new Radio field just beginning to grow! Prepare NOW for these wonderful opportunities! Learn Radio Sound Work at Coyne on actual Talking Picture and Sound Reproduction equipment. # PREPARE NOW and be ready for Radio's many opportunities Forget pay-cuts—lay-offs—unemployment! Don't be tied down to an untrained man's future. You NEED TRAINING IN A FAST-GROWING MONEY-MAKING TRADE. Here's your chance of a lifetime to get it! Hundreds of opportunities now open in Radio. My sensational offer, explained below, makes it possible for you to START AT ONCE! The right way to learn Radio is the Coyne way—not by books, but by actual, practical work on actual Radio, Television and Sound equipment. Here at Coyne you'll service and operate scores of modern Radio receivers, huge Broadcasting equipment, late type Television apparatus, Talking Picture machines, Code transmitters and receivers, etc. In 10 weeks you can step into a REAL JOB, leading to a salary of \$50 a week and UP! # ALL PRACTICAL WORK At COYNE in Chicago ALL ACTUAL, PRACTICAL WORK. You build radio sets, install and service them. You actually operate great Broadcasting equipment. You construct Television Receiving Sets and actually transmit your own Television programs over our modern Television equipment. You work on real Talking Picture machines and Sound equipment. You learn Wireless Operating on actual Code Practice apparatus. We don't waste time on useless theory. We give you the practical training you'll need—in 10 short, pleasant weeks. # MANY EARN WHILE LEARNING You get Free Employment Service for Life. And don't let lack of money stop you. Many of our students make all or a good part of their living expenses while going to school and if you should need this help just write to me. Coyne is 33 years old. Coyne Training is tested—proven beyond all doubt. You can find out everything absolutely free. Just mail coupon for my big free book! H. C. LEWIS, Pres. RADIO DIVISION Founded 1899 COYNE ELECTRICAL SCHOOL 500 S. Paulina St., Dept. 53-5K, Chicago, III. Mail Coupon Today for All the Facts H. C. LEWIS, President Radio Division, Coyne Electrical School 500 S. Paulina St., Dept. 53-5K, Chicago, Ill. Dear Mr. Lewis: Send me your big FREE Book; details of your FREE Employment Service; and tell me all about your special offer of allowing me to pay for training on easy monthly terms after graduation. | Name | • | ****** | • • • • • • • • • • • • • • • • | |---------|---|--------|---------------------------------| | Address | • | | ********** | | City | | State | | # # Vhat Short-Wave Set Shall I Get? # An Editorial by HUGO GERNSBACK SINCE short waves entered upon their present activities we have been flooded with inquiries from readers who wish advice as to what sort of set they should buy. I am in receipt of literally thousands of letters from people asking my advice on purchasing this or that set. This obviously is a difficult thing for me
to do, as in practically all cases the writers give little information as to what sort of set they really want or how much they can afford to pay for it. The remarks I am about to make, therefore, are naturally of a general nature, and each prospective purchaser may of a general nature, and each prospective purchaser may draw his own conclusions within his own limits, as to price and the service to be rendered. and the service to be rendered. There are all sorts of short-wave sets which may be purchased from manufacturers or otherwise made by the enthusiast himself. Some people may not wish to buy the best manufactured short-wave set, while others are not able to or do not care to build their own. Then, too, the cost is usually the one important item that inquirers, as a rule, leave out entirely. You can build a short-wave set from \$3.00 upwards to \$5,000 or more, should you wish to do the work yourself. You can buy excellent short-wave sets from \$6.00 upwards to \$1,000 in the manufactured class. From this, it will be seen that the matter of cost should be the first consideration, because that gives you your starting point. you your starting point. Before going further, I might as well discuss adapters and converters. While these were considered satisfactory at one time, they are no longer rated 100%. For the man who wishes only occasional short-wave reception, and is not too critical as to what stations can be tuned in, the converter or adapter is satisfactory. However, it is not as good as a straight short-wave set. as a straight short-wave set. If you wish to build your own set, again the matter of cost is the most important. You have your choice of combinations from one tube to ten tubes or more—all depend- ing on what you are after. A one-tube set, with few exceptions, requires headphones for reception purposes. While we have described some sets that operate loudspeakers on one tube, such results are exceptional. Even two-tube sets, as a general rule, require head receivers. While in ideal locations and under unusual nead receivers. While in ideal locations and under unusual conditions, the usual straight type, two-tube set may bring in a few stations on the loudspeaker, this is not normal loudspeaker reception. An article in this issue describes a two-tube set which actually gives loudspeaker reception, but this again is an exception. As a rule, it takes a four-tube set to give fair loudspeaker reception. If, therefore, you will shoom a set with small property will shoom a set with small property. set to give fair loudspeaker reception. If, therefore, you want headphone reception, you will choose a set with one or two tubes. If you want good loudspeaker reception, you will want a set with at least four tubes. Now we come to the matter of noise. As yet, short wave reception has not been perfected to the point where all extraneous noises are eliminated. Apartment house elevators, light switches, vacuum cleaners, even automobiles passing nearby, give rise to noise. As a general thing, the more tubes there are in the set, the worse the noise becomes. Thus, with a two-tube set, you will not be bothered nearly as much as with four-tube sets and over. Remember, this is a general remark. If you use one of the new type transposition lead-ins, or even a twisted lamp cord as a lead-in, a good deal of noise is sometimes suppressed—enough as a matter of feet to make recention enjoyable. enough, as a matter of fact, to make reception enjoyable. Again, speaking generally, the novice frequently starts with a two-tube set and after he becomes used to shortwave reception he gets more ambitious and he builds himself a more powerful set, or, what happens more frequently, he is in the market for a first-class manufactured set. Here again there is a split in classification, because in the manufactured class we have the straight short-wave the manufactured class we have the *straight* short-wave sets, tuning as a rule from 10 meters up to 200, and also the *short-wave* and *broadcast* combination sets, which tune from 10 to 200 meters on *short-waves* and also from 200 to 545 meters for *broadcast* reception. In the latter instance, the modern sets are usually made without plug-in coils and the wave-changing is accomplished by means of a single, convenient rotary switch convenient rotary switch. If you are out for short-waves you will want only a straight short-wave receiver, of which there are many now available on the market. While most short-wave enthusiasts will have nothing to While most short-wave enthusiasts will have nothing to do with broadcast reception, it very often, to preserve family harmony, becomes necessary to have a set which covers the broadcast wavelengths. Usually, these sets are quite elaborate. There are a number of very excellent sets of this kind on the market in this country, far surpassing similar sets made anywhere else. These "universal" all-wave sets are not only excellent on the short-waves, but being of the superheterodyne variety, are also superlative for broadcast reception. for broadcast reception. Another question that is asked frequently is—Are battery sets superior to A.C.-operated sets? Truthfully speaking, battery sets are somewhat less noisy than A.C.-operated sets, but in multi-tube receivers this difference is not very evident. While a two-tube battery set may be a good deal less noisy than a two-tube A.C. set, it should be noted that a good deal of noise also comes from the tubes themselves. The more tubes you have, the more noise there is; consequently, a ten-tube battery set may be almost as noisy as a ten-tube A.C.-operated set. Tube noises, while they may not be very objectionable except in exceptional instances, are still to be conquered by our engineers and so far not a good deal of headway has been made. From this, it will be seen that there is not much choice between battery sets and A.C. sets unless, of course, the noise coming in over the line is extraordinary. Such conditions may arise from vacuum cleaners in the house, x-ray machinery, etc., but even such noises can be suppressed to a great extent by filters. The angular therefore to the perennial question, "What The answer, therefore, to the perennial question, "What radio set shall I buy?" depends largely upon yourself, your tastes and the size of your pocketbook. # SHORT-WAVE CRAFT IS PUBLISHED ON THE 15th OF EVERY MONTH This is the May, 1933, Issue - Vol. IV, No. 1. The Next Issue Comes Out May 15th Robert Trout of station WJSV, recently designated as the official announcer to as the official announcer to President Roosevelt for the C. B. S. All broadcasts by the President over the C. B. S. network hereafter will be introduced by Mr. AN ARRAY of broadcasting talent and equipment greater than any ever assembled for a single event was brought into play by the Columbia Broadcasting System when it covered the in- when it covered the inauguration of Franklin D. Roosevelt as President of the United States in Washington on March 4. Herbert B. Glover, Director of News Broadcasting for the Columbia network, drew up plans for the broadcasting of the event to report the activities of Mr. Roosevelt at every point of importance from the Capitol, at one end of famous Pennsylvania Avenue, to the White House on the other. From the air, the ground and from subterranean passages in the musty recesses of the Capitol proper, Columbia provided descriptions to a background of martial music. In addition, the nation's listeners heard a "dress rehearsal" of the actual broadcast from 9:00 to 10:00 A.M., EST, when the entire Columbia staff went on the air with an outline of what was to happen later in the day. The day was climaxed by a rapid-fire description of the gigantic parade from more than a dozen points along the line of march and a colorful description of the time-honored Inaugural Ball. The announcing staff was headed by Ted Husing, who The announcing staff was headed by Ted Husing, who was in charge of that assignment during the Chicago Conventions. The engineering performance was under the supervision of Edwin K. Cohan, Columbia's Director of Technical Operations, and A. B. Chamberlain, Chief Engineer of CBS, with L. H. Bowman, (Continued on page 57) # C. B. S. Uses SHORT WAVES In Inaugural Broadcast Short wave transmitters mounted in an automobile and also on a blimp aided the national broadcast of the inaugural proceedings. C. B. S. engineers on the roof of the Willard Hotel, Washgton, D. C. In foreground Mr. Bowman, Technical Director WJSV, tuning short-wave receiver. At the "mike," Robert Trout. "Auto" waves were picked up here. Below—We see how valuable short waves were to the broadcast system engineers. A portable short wave transmitter was mounted in a car which followed the President in the inaugural parade. Diagram at right indicates how the remarkable national broadcast of the presidential inauguration proceedings and parade on March 4th were handled by the C. B. S. engineers. The short wave transmitters on the blimp and in the auto helped to give a complete word picture to the waiting millions sitting before their loud speakers. How the Columbia network reported the reception of the incoming Chief Executive from fourteen points of observation in the Capital. Map above shows points at which announcers were stationed from time to time. The announcers and their stations follow: No. 1, Ted Husing; No. 2, Husing and Don Ball; No. 3, Don Ball; No. 4, Edwin C. Hill; No. 5, Announcer Church; No. 6, Announcer Slater; No. 7, Frederic William Wile; No. 8, Husing; No. 9, Church; No. 10, Slater; No. 11, Husing, and No. 12, H. V. Kaltenborn. In the Navy blimp and CBS truck were Announcers Mayo and Trout, respectively. ANN CUE 2 WIRE ANT. ON 4 FT. POLES FRONT & REAR OF DACKARD TOURING CAR MIKES 8 B TRANSMITTER 120.6 METERS ENG CUE PHILCO TRANSITON 1460 KC. FOR CUEL S W TRANSMITTER IN CAR - The short-wave transmitter circuit as used
on the "car" unit. • THE accompanying photos show the very latest style short-wave radio-phone equipment rapidly being in-stalled in many of the planes carrying passengers all over the country today. By means of the highly improved short-wave transmitters and receivers developed by the Western Electric Company's engineers and here illusstorms can be reported to the pilots ahead of time, so that they can "ground" the plane, if necessary, without taking undue chances with their human cargo. The latest type shortwave superheterodyne receiver designed for installation on aircraft as here illustrated, utilizes carefully ground quartz crystals for stabilizing to the unusual operating conditions, but they must also be as strong and rugged as possible to stand vibration. The frequency to which the receiver or transmitter on the plane is tuned can be instantly changed at the will of the pilot by simply turning a dial the pilot, by simply turning a dial, these tuning controls being connected with apparatus by flexible metal shafts. # "Short Waves In England" By L. H. THOMAS (G6QB), A. M. I. R. E. • NOW that short-wave work is becoming so truly international, much may be learned from a magazine with a world-wide circulation like SHORT-WAVE CRAFT regarding the conditions under which our fellow-hams and fel- under which our fellow-hams and fellow-listeners work. The English "ham" knows a good deal about his brothers in the States; but they often seem curiously ignorant about the Europeans, and that is the main reason for this little story. Dealing first of all with the ordinary that reason are short-wave listener, we in England are the first to admit that we are very well placed. At hardly any time of the year do conditions become so bad that we cannot hear a goodly selection of "real" DX broadcast. When the Americans are poor we can usually turn our attention to Sydney, Nairobi, Rabat, Moscow (if we ever want to!) and, until their recent close-down, we had our friends at Bandoeng keeping us interested. #### The Composite Set The features of which were voted on by our readers some time ago, will appear next month. A little more laboratory work had to be done on it, preventing its publication in this issue. Watch for this Receiver—"It's got everything"!—The Editors. ## W2XAD has the "Punch"! G. M. T. is, of course, five hours ahead of E.S.T. This fact accounts for the burning of many "midnight watts" over here, for, although W2XAD is generally an excellent transmission by 9 p. m. or earlier, we have to wait until nearly midnight before we can enjoy much in the way of "program value" from the 49-meter stations, or even from W2XAF and W1XAZ. It is only fair to "XAD" to state It is only fair to "XAD" to state here and now that he is the "star" station for sheer strength. For consistency the 49-meter fellows have it all their own way, but they rarely (Continued on page 44) TELEPHONE ONE PAIR CIRCUIT THE NEW YORK TIMES, through its own radio station, recently established a unique record when it recorded on a tape, like border on this page, the League of Nation's report on Manchuria. 15,000 words were recorded without a break during 10 hours Radio operators of THE NEW YORK TIMES, who have established many records in long-distance reception of news, broke one of their records of another kind on February 18th, 1933, by copying 15,000 words of the Manchurian report of the League of Nations' Committee of Nineteen. The report was broadcast to the world by shortwave wireless from Geneva, Switzerland. It was the longest message in time duration, as well as in words, ever intercepted by The Times radio men. Transmission began at 9:00 a. m., New York time, and at 7:22 p. m. all the words had arrived through the air from Switzerland. The wave used for transmission to the United States was 20.64 meters, while another transmitter operating on the 38.47 meter channel projected the waves into the Far East. The former wave is suited for transmission through daylight. The latter channel Far East. The former wave mission through daylight. gives the best results at night. Soon after night surrounded the Alps and the shadow of darkness swept westward, the 20.64 meter waves began to weaken in New York. So the operators here at 2:45 o'clock in the afternoon switched to the 38.47 meter channel and the strong signal was restored. The words were automatically transmitted in Continental code. The signal was exceptionally loud when it flashed across New York. The operators took every precaution not to miss any part of the fleeting sentences. To guard against any ill effects from absorption by the skyscrapers in the Times Square district, a special doublet antenna was erected on a roof in Astoria, L. I., a few miles away. There the signal was plucked from space, amplified and relayed over a (Continued on page 46) Above—front, rear, and bottom views of the "New York Times" specially built short-wave receiver, which employs four tuned R. F. circuits, with all stages shielded. # THE "BEGIN-NER'S TWIN" By ROBERT HERTZBERG A Simple, Reliable, 2-Tube Receiver for the newcomer to the Short Waves: Easy to Build and Economical to Operate: Gets "Foreign" Stations easily • Their interest aroused by numerous published reports of direct foreign reception on the short waves, many former radio experimenters and constructors, and new "fans" as well, are window shopping, studying the radio catalogs and asking many questions about suitable receiving sets. While there are several very fine short-wave receivers of advanced design on the market, they are for the most part a little too complicated and expensive for the casually interested persons who want to investigate the mysteries and delights of the short wave channels Inside view of a complete d "Beginner's Twin." The parts have been placed so as to make the connections short and direct. The tuning condenser is controlled by the vernier dial; the regeneration condenser is directly in front of it. The plug-in coil and detector socket are at the left. The R.F. choke, the A.F. transformer and the amplifier tube are along the back; a neat and simple layout. To meet the requirements of these people, whose number is evidently very large, the "Beginner's Twin," illustrated in these columns, was designed. This is a two tube, dry battery operated receiver of exceedingly simple and reliable construction, using the minimum number of parts consistent with satisfactory results. It can be assembled and wired in a couple of evenings by anyone capable of using a screwdriver, pliers and soldering iron. It may also be obtained in ready-to-work form. The author running an actual listening test on the "Beginner's Twin." This photo shows the entire outfit, complete with accessories. The entire active short wave tuning range from 15 to 200 meters, taking in broadcasting, commercial radiophone, aircraft, ship, amateur and police stations, is covered by a set of four plug-in coils, only one of which is used at a time. Plug-in coils are not nearly as much of a nuisance as most people think; in fact, experienced short wave fans prefer them to any other method of wave changing, and the best sets, whose prices run well into three figures, still use them. #### 2 Tubes of the 30 Type Used The two tubes are of the 30 type. Their very low current requirements (only an eighth of an ampere total) make the use of ordinary No. 4 or 6 dry cells entirely satisfactory as the source of filament current. Two small 45-volt "B" batteries are adequate for plate voltage and will last many months. The set will even work very nicely, with slightly reduced volume, on a single 45-volt block. No apology is offered to more knowing radio men for the use of type 30 tubes instead of 32 or 34 screen grid (Continued on page 63) At left: Wiring diagram for the "Beginner's Twin"—a 2-tube, battery operated S-W receiver which will appeal to everyone just starting in the short wave game. Physical diagram is given at the right. This young lady is enjoying the unusual experience of hearing "both ends" of a shortwave radiophone conversation, with but one receiver and one pair of phones and without "retuning." By C. E. DENTON noises. One would think that the back-ground of two receivers would be greater than that of one receiver, but in many instances this is not the case. South America and England Come in Fine! The bands of frequencies to which this receiver will respond is limited by the coils available. How many times have you listened in on one end of a radio conversa-tion and wished that you could hear what the other fellow had to say? Here is a receiver or—rather two re- ceivers in one—that is the answer to the above question. While the idea of "two receivers in one" has been written about before, little has been done to develop a simple circuit that can be built reasonably that will do the trick. Two-way listening-in is a fact with a receiver of the kind here pictured and adds a new "kick" to short-wave reception. In fact, reception from two stations transmitting the same program on two different frequencies sometimes proved more satisfactory than the signal received from only one than the signal received from only one of the transmitters and received on one receiver. The most marked improvement was noticed in the minimizing of • You can now listen to both ends of a phone or code conversation—thanks to the "dual channel" receiver here illustrated and described. In a very interesting test made on the finished receiver by Mr. Denton, who directed its construction, another remarkable stunt was accomplished—that of eliminating the phenomena of fading on trans-Atlantic signals. This effect was accomplished by tuning to two different frequencies which were being broadcast simultaneously at Daventry, England. When fading occurred on one frequency the opposite was the case with the other, and a "mean average" steady strength of signal resulted. fading, and, strangely enough, in the
apparent decrease in background Rear view of the "dual wave" receiver, showing how the two distinct detector tuning circuits are arranged; also the "single" audio channel. were conducted in the broadcast band were conducted in the broadcast band and all the way down to 12 meters. The results were always the same—good! South America and England were tuned in every, evening without fail! The volume was excellent on the phones and most nights the output of the audio stage was fed into a separate power amplifier so that loud speaker reception could be enjoyed. Essentially the receiver consists of two separate radio sets and a common stage of audio frequency amplification. two separate radio sets and a common stage of audio frequency amplification. Simple? Yes, and not much to it at all, but the idea is not only useful in small sets but can be carried out to such a point that short wave superhets can be used with the outputs of the second detectors feeding into a common audio frequency amplifier for a mon audio frequency amplifier for a de luxe system of reception. This receiver has been designed for battery operation, although A. C. oper- ation, or six volt storage battery operation of the filament supply in conjunction with a good "B" eliminator, will work as well. The fundamental circuit will remain the same; all of the changes to be made will be in the filament circuits and the bias circuit of the first audio stage. # Dual Wave Circuit Described As mentioned, the receiver consists of two radio sets with suitable plug-in coils for use on short waves. The outputs of the two sets are fed into a common audio frequency transformer so that the mixed signals will be ampli- # Radiophone Talk · · NEW! On This New # S-W RECEIVER # and LESLIE W. ORTON fied at the same time and passed along to the phones. A study of the parts making up one of the sets will cover both of the receivers to the point of common connection to the audio frequency ampli- Note the method of antenna coupling. The antenna is carried to the set in such a way that the lead is not near any of the parts. The antenna coupling condensers are made by winding hook-up wire on a small piece of bus-bar. Both sets are connected to the same antenna. Both sets work at the same antenna. Both sets work at the same time and work RIGHT. Shunt feed is used for the regeneration control and the success of this method can be traced to the operation of the short wave chokes used. The set will oscillate on every band and will control smoothly. Note that the grid leaks are returned to the positive side of the filament. Be sure that your set is connected in a like manner, because this will add to the sensitivity of the receiver and help to obtain smooth regeneration control. Note that the secondary of the audio frequency transformer is shunted by a .0015 mf. tubular condenser. The "dual wave" receiver enables you to tune in two widely different frequencies simultaneously on a "single" audio channel. You can now hear both ends of a phone conversation; also eliminate fading effects by tuning to two different frequencies radiated by some of the powerful S-W stations. lowers the high frequency response of the audio stage and tends to minimize the back ground noises. Be sure and use this condenser, as it helps a lot. Use tuning dials that are noiseless. When a set is placed in its most sensitive condition, that is the time that noisy dials cause trouble. It is a source of irritation that spoils much short of irritation that spoils much short wave reception. Many short wave fans fail to realize that most of the noises that limit their reception from dis-tant stations are created in the receiv- er proper. The above chapter goes double for tubes, resistors and condensers. Every part used in the construction of a short wave set should be selected for noiseless operation, for the best results. Construction Pointers The construction of this receiver will not offer difficulties to even the most inexperienced constructor, as the set is sim- plicity itself. Drill the aluminum front panel so that the two tuning dials and the regeneration condensers can be mounted in place as shown in the pictures. Do not place the aluminum shield in place until everything is mounted on the panel and the baseboard. Place all of the parts on the base-board in their proper positions as shown and fasten down firmly with half-inch wood screws. Be sure that every-thing is fastened into place and an-chored firmly so that the receiver will not be noisy. Make all soldered connections with a good clean, hot iron. See that all soldered connections are CLEAN and SOLID. Much of the unnecessary noise found in home made short wave sets The picture above shows graphically just what happens with the new "dual wave" receiver— -the opera-tors hear both ends of a phone conversation, no matter what frequencies the two originating stations happen to be using. > can be traced to imperfect connections. Be sure that the hole through which the shaft of the tuning condenser passes (in the panel) is large enough so that the shaft will not rub on the panel. If this precaution is not taken there will be a very annoying series of noises present in the phones when the Here we have an interesting view looking down on the "dual wave" receiver described by Messrs. Denton and Orton. Schematic wiring diagram showing the connection of the really few parts necessary to build the "dual wave" S-W receiver. set is oscillating. Be sure that the aluminum shield partition is firmly fastened to the front panel because if it is not fastened securely, more noise will develop. When drilling the hole used to mount the antenna binding post be sure that it is drilled over size so that sure that it is drilled over size so that there will be no danger from shorting of the antenna post to the partition. A short at this point will prevent reception. Use the best insulation that you can find at this point. Losses at this point will spoil reception. The antenna series condenser is made by winding 12 turns of hook-up wire on a piece of busbar, one end going to the stator plates of the tun- ing condensers and the other end free and not connected to any thing. The capacity of this simple condenser is varied by the movement of the small coil of wire back and forth on the piece of busbar, which, by the way, is two and a half inches long. Careful attention to detail will enable the constructor to obtain good results as soon as the receiver is placed into operation. # Tuning the Dual Wave Receiver The method of tuning this receiver is comparable to the operations necessary for tuning any other S. W. receiver, except that there are two receivers to be tuned and it is necessary to know what frequencies are being used for the two-way transmission. For example, one of the authors list- ened in on the programs transmitted from GSA and GSC, England. One of the transmitters was in the 48 meter band and the other was in the 48 meter band and the other was in the 30 meter band. Both of the transmissions were identical and the reception was marked by the absence of fading and the high audibility level of the output. Then batteries are appreciated as a connected c The batteries are connected as shown in the picture diagram. Be sure that the B— connects with the A plus terminal. This is necessary, as it provides a two volt bias for the audio stage. If A— and B— are common then there will be no bias on the grid of the type 30 tube used in the audio amplifier amplifier. Ground connection is made to the negative filament terminal. A good ground connection is very important, as every short wave fan knows. Use high impedance phones. The author uses Baldwin Type C phones, which are rather heavy but are really very sensitive. Most of the phones offered at bargain prices are not as sensitive as they should be. Regeneration is controlled by means Regeneration is controlled by means of throttle condensers and for smooth operation various plate voltages should be tried until the receiver goes into oscillation smoothly. This combina-tion of coils, tuning condensers, plate chokes and regeneration condensers is hard to beat for real control. If you are not satisfied with the smoothness of the control after the B voltages have been adjusted to the best value, then try various sizes of grid leaks. The receiver as constructed was tested with Eveready Raytheon tubes of the 30 type and 3 megohm resistors seem to work out very well to work out very well. If the receivers do not oscillate then (Continued on page 49) The uninitiated set-builder will find it easy to enjoy all the unusual results obtainable with the "dual-wave" receiver, by simply following out the wires connecting the terminals of the various apparatus constituting the receiver as here illustrated and described. Front view of "inductive" S-W tuner, built from parts of a Radiola III, and case from a Phileo "B" eliminator. Schematic diagram of the tuner appears at right. # An Inductive S-W Tuner An A. C. Operated 100 to 350 Meter, Short-Wave Receiver With 2-Stage A. F. Amplifier • A NUMBER of years ago one of the most popular broadcast receivers was the "Radiola III" which was of the single-circuit regenerative design; it employed a variable inductance instead of a variable condenser for tuning. The set about to be described is built around one of these easily procurable units, the whole outfit being mounted in a Philco "B" Eliminator case. Some of the principal characteristics are low cost, fine performance, simplicity of operation and smooth regenerative control. Three tubes only are used, namely, 27 Detector, 24A first audio, and 47 second audio. The set has a single dial for tuning, one auxiliary control for regeneration, a potentiometer for varying the detector plate voltage and a special five- By STANLEY E. HOOD 000 ohm potentiometer in the detector plate circuit. The tuning range is selected with a five-point switch which connects
the proper fixed condenser in series with the aerial and the grid variometer. The amplifier part of the circuit consists of a one stage transformer, coupled from the detector to a 24A and one resistance stage coupled from the 24A to a 47. An output transformer is used in the plate circuit of the 47 to keep the heavy plate current out of the speaker or earphone windings. Any power supply, capable of furnishing the necessary filament voltage and 250 volts D.C. for the voltage-divider, which is built in the set, is suitable Operation This receiver is very simple to operate. By turning the antenna switch located on the left end of the set counter clock-wise, the lower wave bands are obtained. Each band is then tuned by means of the grid variometer. The proper volume level is obtained by means of the plate variometer. It will be noted that for the longer waves this control, located on the left of the set, will be turned so the arrow points about straight up. This is also true of the detector plate voltage potentiometer, located on the right of the set. Both of these controls turn clockwise for an increase in regeneration and detector plate voltage respectively. As lower bands are tuned in regeneration and detector plate voltage will have to be decreased. (Continued on page 51) The "inductive tuner" points the way to a new method of tuning and one that we believe will receive considerable attention in the near future. Tuning may be accomplished either by varying the capacity or else the inductance; in this case Mr. Hood elects to vary the inductance. He employs the double-rotor coupler from a Radiola III. point tap switch for adjusting the fixed antenna condensers. #### Circuit By referring to the connection diagram, it will be noted that tuning is accomplished by means of a grid variometer, and volume by means of a plate variometer in conjunction with a 50,- What the inside of the inductively tuned short-wave receiver looks like. H. W. Secor using new S. W. League RADIO MAP and TIME CONVERTER in testing set. This set actually "logged" on the loud speaker the new English "Daventry" station GSA; EAQ, Madrid, Spain, and VK3ME, Australia, 12,500 miles away! • The set about to be described employs the Oscillodyne circuit described last month, but differs from the set therein described mainly in that a tapped inductance coil is employed, and a stage of audio frequency amplification added. The use of a tapped inductance coil obviates the necessity for using plug-in coils and their accompanying incon- tion has not heretofore proved very popular with Short-Wave constructors when used in conventional circuits; and for this reason, a few words to justify its use in this circuit may not be out of place. In a non-regenerative circuit a tap- ped inductance coil is obviously not as efficient as a plug-in coil due to the losses necessarily introduced by the tapped construction and associated apparatus. This will result in an increase in the total circuit resistance and a consequent decrease in the amplification obtainable. In a regenerative receiver, however, al-though it is the-oretically possipossible to reduce the # Building In the present article Mr. Worcester tells how to build the really remarkable 2-tube "Oscillodyne" receiver -which the editors had the pleasure and satisfaction of testing on sig-nals picked up from half-way around the world-12,500 milesand which were reproduced on the loud speaker! This set was tested by the author who also received VK3ME, Melbourne, Australia, on the loud speaker, without interrup-tion and with excellent fidelity. EAQ, Madrid, Spain, and other stations were also received on the loud speaker! circuit resistance to zero by critical adjustment of the feedback, it will be found that there is a practical limit to which the resistance can be reduced and at the same time stable operation retained. The reason for this is that if the feedback is increased too far, minute uncontrollable variations in the plate current will cause the circuit to break into oscillation after a short in- terval of time. Now, if the circuit resistance is increased by using a tapped coil construction, for instance, it will be found necessary to increase the coupling between the grid and plate circuits in order to obtain maximum signal strength. Consequently, with this increased coupling, the above minute plate current irregudarities will have a correspondingly greater effect, and the practical limit to which the circuit resistance can be reduced is diminished. reduced is diminished. The above discussion is, of course, merely a roundabout way of saying that in a high loss circuit the regeneration control is "roughened up" and the circuit goes into oscillation with a "plunk" instead of a gentle hiss as is the case with a low resistance circuit. The photos above show the rear and bottom views respectively of the 2-tube "Oscillodyne." Schematic wiring diagram for Mr. Worcester's 2-tube "Oscillodyne," which "pulls in" world-wide short-wave stations on the loud speaker! # A 2-TUBE OSCILLODYNE # By J. A. WORCESTER, JR. PART 2. Second of a series of articles on the "Oscillodyne"—a brand new short-wave receiving circuit. Part one, describing a remarkably sensitive one-tube "Oscillodyne," appeared in the April issue. Complete short-wave coverage without plugin coils. Hence, we find that in a regenerative receiver the use of a tapped coil will generally result in a decrease of efficiency. ## Resistance "Negative" in Oscillodyne In the Oscillodyne circuit, however, the resistance is negative at all times during the "building-up" period, and consequently as long as the circuit can be made to oscillate irregularly, it makes no difference how large the circuit resistance is. An inspection of the schematic diagram in Fig. 2 will show that a shunt-feed tickler arrangement is employed as an oscillator. This enables both contact arms of the switching mechanism to be at ground potential. An attempt was made to use the Colpitts circuit, shown in Fig 1A, which would simplify the switching problem by requiring the use of only one switch. It was found, however, that although the circuit would oscillate easily, it was not possible to obtain satisfactory irregular oscillation at an inaudible frequency. The addition of a stage of audic from The addition of a stage of audio frequency amplification permits the use of a loud speaker on foreign as well as local stations. This stage is impedance-coupled and employs a pentode type 47 tube. A magnetic type speaker works satisfactorily when connected directly across the output. A dynamic speaker, 12,500 Miles on Loud Speaker on 2 Tubes Verified by the Editors if used, would of course require an impedance-matching transformer. The use of earphones is not recommended in the output circuit, for two reasons: In the first place, the background noise is generally too high for satisfactory earphone operation; and, secondly, the rather considerable plate current that flows in the pentode output may prove damaging to the phones. If it is desired to use earphones, it is recommended that a jack be provided, enabling the earphones to be plugged into the detector circuit out- # Constructional Details of Oscillodyne The general layout of the apparatus can be seen from the photographs. The actual dimensions of the mounting holes are not given, as individual constructors may wish to vary this layout slightly or use other parts than those enecified. The aluminum panel measures 6" x 9" and the subpanel, also aluminum, measures 4½" x 8½". These dimensions were chosen so that the whole assembly could be inserted in a 5" x6"-x 9" aluminum shield box if desired. If this is done, one of the 6" x 9" sides of the box will be replaced by the front panel of the chassis. It will also be necessary to cut the other sides so that the various binding posts and the speaker jacks will be accessible. The various parts can be mounted on the subpanel and wired before the front (Continued on page 54) FIG.1 B Three simplified forms of the Oscillodyne, showing the use of a tap switch. The circuit as Fig. 1A, while simple, did not work out well in practice. The circuits at Figs. 1-B and 1-C were also unsuccessfully tested by the author A picturized wiring diagram for those uninitiated to the art of reading schematic diagrams and from which all of the simple connections hetween the parts of the 2-tube "Oscillodyne" can be clearly discerned. It really is quite remarkable that with only 2 tubes such a great "DX" receiving range can be accomplished, with the signals on a loud speaker. # \$500.00 Prize Contest For the Best Title Describing This Month's Cover MAYBE you have noticed the slight change of policy inaugurated several months ago, whereby one month we have a strictly technical cover followed the next month by a human-interest cover. This month, it was again the turn of the human-interest cover. The idea is really based upon fact because it illustrates in a way an episode from the editor's early days, except that in those days there was no radio, not even wireless (code transmission). In those days we had an electrical laboratory where we were fond of dabbling with where we were fond of dabbling with all sorts of electrical "gadgets," from home-made electrical plants to Wims-hurst machines and Tesla coils, and believe it or not,—exactly as the short wave enthusiasts do today,—in those bygone years we burned the midnight oil just as is the case today, and we had to contend with an irate mother, just as the budding "hams" have to contend with the same condition these So after we had explained the whole situation to our veteran artist, Howard V. Brown, the cover was delivered in due time and it looked mighty good to us. Next came the usual editorial task of deciding upon a title to use with it that meant something, and if possible draw a smile from the reader possible draw a smile from the reader. This month, however, there were difficulties
in that a goodly number of short-wave sets rained in upon us. Just as we were about to concoct a snappy title, in walks an expressman with Mr. Worcester's two tube "Oscillodyne." We fairly "itched" to get our hands on it and have it hooked up to test out. While we were still itching about it, in walks Mr. Denton with his latest "two-way" radio which got us even more excited, and after we had listened to his enthusiastic dishad listened to his enthusiastic discourse extolling its merits, and had hooked up the set and listened to it, it had gotten so late that the idea of a title had entirely vanished from our minds. Besides, we wanted to take those two sets home and test them ourselves, and we figured that this for once was far more important than "fool titles." "fool titles." So the editor washed his hands of the entire title business, and now throws the entire responsibility into your lap. The editor figures that you have more time to dope out a good title than he has, and as it may take you some time to do a good job, he is willing to pay you for your time. As willing to pay you for your time. As a matter of fact, arrangements were made with a number of radio concerns who will donate some \$500.00 worth of radio apparatus to this contest. The entire contest has been arranged in such a manner that practically every contestant will get a prize. Anyone who can think up a fair title has an excellent chance to win one of the prizes. There are so many radio items that the judges will not have much trouble in assigning a prize to almost all, always providing that the editors don't become "snowed" with the come "snowed" with the come "snowed". under" with too many thousands of really good titles, but this, as a rule, is unlikely. What then, is wanted in this contest What then, is wanted in this contest is a good title explaining the cover illustration of this issue. READ CAREFULLY AND DON'T JUMP AT ANY CONCLUSIONS. IN A CONTEST OF THIS KIND READERS USUALLY DO NOT READ INSTRUCTIONS AND CONDITIONS CAREFULLY AND AFTERWARDS ARE DISAPPOINTED WHEN THEY WIN NO PRIZE. READ THE SIMPLE INSTRUCTIONS CAREFULLY TO MAKE SURE THAT YOU FULLY UNDERSTAND WHAT THIS CONTEST IS ALL ABOUT. Understand, that this is not a "cash" contest. The \$500.00 is the actual worth of the radio apparatus which has been donated by radio manufacturers and other radio firms toward this contest. A good title should have some allusion to radio or short waves, and the higher prizes will go to those who have the best titles. To give you an idea what is meant, a few titles are given at random: "Mom Rules the Waves" "Wavering Between Sleep and Sci- "Short Waves vs. Shorter Hours" These are just a few titles that we thought up in a hurry. We are sure that you will be able to think up a better title than any of these. Prizes will be awarded for the best titles submitted. Rules pertaining to this contest: 1.—A suitable title is wanted for the front cover of this month's issue. 2.—The title should be self-explanatory and should have in it some refer- tory and should have in it some reference to radio, short waves, or both. It should be humorous, if possible. 3.—You may submit as many titles as you wish. There is no limit. 4.—Titles must be submitted on slips of paper size of a postal card, 3½ x5½ inches, or you can send your title on a one-cent postal card, if you prefer to do so. Only one title must go on one sheet of paper. Use only one side of the paper. If the paper or postal card is larger than that size the entry will be thrown out automatically. 5.—Write in ink or typewrite the title; no pencilled matter considered. 6.—Name and address must be given on each title, no matter how many you on each title, no matter how many you (Continued on page 56) # **Inter-Office Communication on 5 Meters** Experiments in the development of transmission by short waves finds engineering officials of the Columbia Broadcasting System using five-meter transmitters and receivers as a means of inter-office communication. Above (left) E. K. Cohan, Technical Director of CBS, speaks into a portable one-watt transmitter on his desk while Chief Division Engineer Henry Grossman (right), listens-in with a receiver in a broadcasting studio on another floor. The portability and low-power requirements of the five-meter outfits, it is thought, will eventually bring about their general use in the field of remote control broadcasting. # An Improved Super-Regenerator By J. A. GRATER Mr. Grater here explains the greatly improved super-regenerative circuit that he has worked out. This receiver has a terrific wallop in it and it provides the maximum strength of signal with the smallest number of tubes. • AFTER reading Mr. B. F. Locke's article and circuit on a super-regenerative receiver, published in the July issue of SHORT WAVE CRAFT, I decided to send in a circuit that I have experimented on for the past six months, but on second thought I have revised and combined Mr. Locke's circuit with the one I developed and find it by far superior to either circuit. We will begin by adding an untuned R.F., (radio frequency) inductively coupled, as a booster circuit. This is really essential as it sends a strong sigreally essential as it sends a strong sig-nal to be tuned before reaching the de-tector. Both R.F.'s being inductively coupled means two high-gain R.F.'s that really work. Care should be taken to see that the screen-grid voltages on both R.F. tubes are constant and proper. Excessive voltage on the screen-grids will cause the R.F. tubes to oscillate. A 35 tube is used as a detector as it proves out to be superior as a regenerative detector, over the more commonly used 24. The 35's are also used in the R.F. as they are a standard high-gain tube. This tube seems best for all-around short-wave reception, although everyone has his own pet idea. A 27 tube is used as an oscillator and proves very satisfactory. A switch in the plate circuit to cut out the oscillator while tuning is preferable over fila-ment control, as the tube is ready to work immediately. Another fine point is the 50,000 ohm variable resistor in the screen-grid cir-cuit of the detector tube; this acts as a vernier on regeneration. Motor-boating and fringe-howl caused mostly by battery coupling. 25,000 ohm resistor and the 2 mf. by- pass condenser eliminate this completely. This double resistance, by-pass, type of coupling in the detector plate seems to work out as the most efficient. By using the volume control in the grid circuit of the first audio, you have your R.F.'s and detector working at a maximum, and only work your audio system on an average, below the noise level. This also gives good quality when using phones with the volume turned Changing the 1st audio to a 35 spacecharge, resistance coupled to a 47, you get rid of most of the 47's disadvantages and retain the wonderful amplifying quality of this tube. To get a positive bias on the grid of the 1st audio, a small flashlight battery works very good; if you wish you can take it off the voltage divider. For the volume hound who likes this "ten-room apartment" stuff, he might try 47's in push-pull. Some may prefer a 45 to a 47 in the output. a 45 to a 47 in the output. Now we come to the most important factor in A.C. operation, on short waves the power supply. The power transformer should be of the electrostatic shielded type. A little money spent on this item is well repaid by the results obtained. Tunable hums are eliminated by the by-passing in the power pack. The filament supply has a 20 ohm C. T. (center ton) resistor with eliminated by the by-passing in the power pack. The filament supply has a 20 ohm C. T. (center top) resistor with the C. T. grounded. One side of the filament is grounded by a .01 mf. condenser. This throws the oscillations set up by the filament circuit outside positive lead and the .1 mf. buffer condensers on the A.C. line help to keep out line noises. The R.F. choke in the positive lead and the .1 mf. buffer consistive buff positive lead and the .1 mf. buffer condensers in the high-voltage winding keep out the R.F. current sent out by the 80 tube. It must be kept in mind that this R.F. choke must be heavy enough to pass the required milliampere drain of the tubes and also the bleeder draw. An 85 mill (millihenry) choke will do, but it leaves only about 10 mills for the bleeder draw, which is rather small. A 90 mill choke is much better. The power pack cable should be shielded and the shield grounded to the set and also to the power pack chassis. Both power pack and set are com- pletely shielded. An insulated condenser coupling should be used to eliminate dial scratching coming through the phones, due to a magnetic field set up by the condenser and metal dial. The suggested arrangement of parts and the shielding arrangement are self-explanatory. If you want high-class performance use high-class parts. Isolantite coil forms, coil sockets, and tube sockets are the best. Hammarlund condensers are used exclusively. Remember that a set is no better than its poorest part. Suggestions for panel and subpanel layout of the "Improved Super-Regenerator" here described by Mr. Grater. Schematic diagram showing how to wire Mr. Grater's Improved Super-Regenerative Short-Wave Receiver Photos above show the front and hottom views of the "3-tube DX'er" on which the author heard many foreign stations, including HVJ, FYA, GSC, EAQ, et cetera. Schematic drawing of Mr. Thayer's "3-tube DX'er"—showing how he couples the antenna and ground to the R.F. tube, method of regeneration control by potentiometer and resistance coupling of detector to audio amplifier stage. # A 3-Tube • To begin with, three tubes were selected as the maximum number to use in order to keep down size, ease of control, and most important of all cost. In order to get the best results from the minimum amount of tubes used it was necessary to use the latest types so a 58 was chosen for the R.F. stage, a
57 for the detector stage and a 56 for the audio stage. Many will wonder why I didn't use a pentode there. The reason is the set was to be used mostly with earphones and the volume is there with earphones and the volume is there aplenty for phones. Also, a modern pentode amplifier with a dynamic speaker is ready for use any time and when loudspeaker reception that is loudspeaker reception is desired, it is only necessary to turn the amplifier on and plug a lead into the phone jack. The base is made from 1/16" aluminum 11/16" which when bent into num 11x16" which, when bent into shape, gives a top of 6x11 with a 2½ deck. The panel should, of course, be measured and drilled before it is bent into shape. The exact place to drill the holes for the coils and center tube will have to be decided on after the size of the two gang condenser is measured of the two gang condenser is measured off. The coils should be placed half way between the condenser and the ends and back about an inch and three quarters from the front. They are mounted on raised sockets or Na-Ald type sockets so as to keen them away from the panel metal. The two gang .00015 mf, tuning condenser is one of ordinary design and was cut to size by removing some of the plates. A 5 plate midget vernier is used in place of a fixed balancing condenser because it is very helpful in septenting a broadersting station from the arating a broadcasting station from the code stations which are nearly always interfering. Grid leak detection is used in the 57, although the tube is recommended for bias detection. It was found that the grid leak method gave more sensitivity. The grid circuit of the detector is coupled to the plate of the R.F. through a one to the detector plate and the detector screen grid, are smaller chokes, of a single winding of 300 turns each. Regeneration is controlled by a 75,000 ohm potentiometer in the detector screen grid lead and works very smoothly indeed. It will be a fine source of noise, though, unless a smooth acting potentiometer is obtained. A straight resistance coupled audio stage is used because of the fine quality of output obtained and also because the recommended plate voltage is supposed to be fed to the 57 through exactly 250,-000 ohms for best results. Probably some mention should be Probably some mention should be made of the front panel or rather the lack of one. In the receiver no hand or body capacity effects were noticeable and for that reason the panel was foregone. A few cents were saved on that score and made mounting in a small mahogany cabinet a simpler process. The plug in coils are then put in place by raising the lid place by raising the lid. A piece of BX cable was obtained and the power supply leads were run # DX'er That Hauls 'em In! through it, making a better job mechanically as well as eliminating any chance of stray pickup in the leads. A power supply similar to that described by Mr. Denton, for the Denton Stand By Receiver, in a back issue, is used and is very compact and light. There is not the least trace of hum even with earphones until down below 15 meters and then the hum is apparent although it isn't so awful bad even down there. Although nothing but a 10 foot indoor aerial has been used with this set, (inside a tile building) some very fine results have been obtained, and most of the stations come in loud enough to operate a magnetic speaker through the 56 tube. When it is connected to the amplifier it simply makes the dy-namic speaker jump off the bench. Some of the stations received regularly | W8XK | Pittsburgh, Pa. | 19.7 | Meters | |-------|--------------------|------|--------| | HVJ | Vatican City | 19.8 | Meters | | FYA | Pontoise, France | 25.6 | Meters | | EAQ | Madrid, Spain | 30.4 | Meters | | GSC | Daventry, England | 31.3 | Meters | | GSA | | 45.5 | Meters | | VE9DR | Drummondville | 25.4 | Meters | | VE9GW | Bowmanville, Can. | 49.1 | Meters | | VE9CF | Halifax | 49.1 | Meters | | HKD | Barranquilla, Col. | 51.4 | Meters | | | | | | also the following S.W. broadcast stations in the United States, besides W8XK mentioned above: W3XAL, W9XF, W2XAD, W3XAU, W1XAL, W1XAZ, W3XL, W8XAL. Also numerous airport and airplanes, Transatlantic telephone, NAA time signals, By RAYMOND E. THAYER This nifty little 3-tube S-W Receiver was designed for the purpose of providing a "Depression" type, low-cost job, which would also make use of the new tubes. It uses a 58 for the R.F., a 57 regenerator detector, and a 56 A.F. stage. "I believe that in the three-tube short-wave receiver here described that I have combined good looks with the efficiency of the receiver so that it will stand up with many commercial sets of a similar type and also out-perform many of them."-The Author amateurs from all districts and several in Canada and New Brunswick and Halifax. Police stations have been re-ceived from several states, including one police station in Canada. Have received many other foreign stations but was unable to identify them. WOO Ocean Gate, N. J. 72.87 Meters Deal, N. J. Medellin, Colom-WOO 63.13 Meters HKO bia, S. A. Short Wave, Chi-50.80 Meters WENR 49. cago Meters Madrid, Spain 30.4 Meters YV2BC Venezuela 49.97 Meters Amateur calls XIG, XIQ in Mexico City heard on 80 meter phone band. Portable W6GAZ phone in Calif., heard; all "Ham" districts heard on 80 meter phone band in one evening. | | | - | OIL D | ata | | |----|----|----|-------|---------|--------| | L1 | L2 | L3 | L4 | | | | 16 | 32 | 32 | 18 | 100-200 | Meters | | 10 | 15 | 15 | 8 | 50-100 | Meters | | 6 | 7 | 7 | 5 | 28- 60 | Meters | | 5 | 4 | 4 | 5 | 13- 30 | Meters | #### Parts List for 3-Tube DX'er One aluminum bent and drilled base. (Blan.) (Blan.) 3 Subpanel sockets, (two six, one five prong). (Na-Ald) 2 Na-Ald Universal mount sockets (For raising coils) 1 75,000 Ohm potentiometer, (Centralab) (Clarostat) 1 5 plate vernier midget (Pilot or Hammarlund) marlund) (Continued on page 57) Picture diagram above shows in simple fashion how anyone can build Mr. Thayer's "3-Tube DX'er"—it uses the latest tubes. The diagrams at the right shows at top—the power supply hook-up and below—the sub-panel layout. Well-balanced "panel controls" on the 3-tube short-wave "stand-by." as rebuilt from the Radiola V. The drawings above, with the aid of the text, should make the conversion of the set a relatively simple matter, # A 3-Tube Stand-by One of the best Radiola receivers of the older types, ideally suited for rebuilding in the form of a worthwhile 3-tube S-W receiver, is the Radiola V, model 885A. This receiver was built in a solid brass case; this case opens diagonally with a flip of the wrist, making it easy to change the plug-in coils. #### \$20.00 February Prize Winner THE Radiola V, Model 885-A, was produced considerable quantity and may be purchased for little if not nothing flat. As the As the following paragraphs will show, it is admirably adapted for short. wave construc- tion, and when completed is all that its name implies. The operator enjoys many mechanical and operating features almost impossible to combine in modern sets of no smarter appearance. A glance at Fig. 1 will recall the set to mind, and may emphasize the rugged and commercial appearance so many "hams" covet. #### Salvage Let's consider the salvage possibili-ties in detail before we start to build. Dismantle the set completely, leaving only the binding posts on the ends and rear. Doing so will give you a hearty respect for the size and efficiency of the parts. Look 'em over: (1) Base board and cover: of highly polished hard wood, are a standard size, 24"x7"x½" with the moulding removed. Large enough for any table model super-het or just right for a "two-tuber" if cut in one-foot lengths. (2) Metal cabinets: of solid one-sixteenth inch brass, one-eighth inch base, with 22 inches of bakelite binding post strip, an inch wide and a quarter inch thick, at the base of the ends and rear! By setting your cabinet three or four inches from your back wall or bat-teries the flip of one hand will pick up a coil, snap open the cover, remove a coil, insert another, and close the cabinet. No other arrangement can permit it so simply. The Tuner cabinet I use to house a wave-trap and a long-wave (not broadcast) one tuber with honeycomb coils. And of course it smartly matches the short wave outfit, in the old Detector- Amplifier box. (3) Phone Jacks: the left and right hand jacks were mounted in their old positions, right as first stage, left as second for the second is used least, and your cord is out of the way in the position you use it most. The two extra jacks mount readily by holes in their frames to experimental baseboards and do any of these puny modern jacks? Also, when you shift audio stages hurriedly and slam home your phone plug, you can use a healthy sock; the cabinet is heavy and won't fly across the room or detune. Neither will the jack "creep" in its hole nor lose its constant biting grip. its constant biting grip. (4) Fixed condensers: two .001 mf. two .0008 mf. of heavy copper foil and mica, impregnated, and clamped under tremendous pressure in a heavy brass case. Test 'em; if they are still O. K. they are probably as good as new. (5) Grid leaks, and clips: at least some of these are usable. (6) Tube shelf: went right back in, as is. (7) Audio Transformers: the old RCA U.V.712, 7½ to 1 ratio, shielded, of large wire and low resistance for Drawings above show appearance of the Radiola V as converted for short-wave reception. # from a Radiola V # By A. R. APPELMAN Mr. Appelman is an experienced short-wave fan and a graduate of the Engineering Course of the West Point Military Academy. He here describes how he converted the Radiola V into a dependable 3-tube "stand-by" receiver for short-wave reception. Few extra parts are necessary. such a ratio, all built on a tremendous circular core of fifty laminations—count 'em. A single stage with one of these has tremendous power and
amazingly little distortion. The secondaries are of exactly the right impedance for our two-stage impedance-coupled amplifier. Guess we better put these right back in, and when we hook it up just forget the primaries. (8) Tube sockets: of glazed porcelain, big, strong and heat-resisting. These went into a pal's transmitter in exchange for smaller UX-type sockets, and some other equipment, for those and some other equipment, for those porcelain sockets, like the above transformers, are at a premium among hams. (9) Rheostats: these also went into a transmitter, though one went into the short-wave set. These are demountable, may be rewound to any resistance in a few minutes, of good bakelite, are of noiseless operation, and mount read- ily on a base or panel. (10) Variable Condenser: double and roller-bearinged, no use at short waves, but has rested comfortably in both a transmitter and a long wave set. (11) Lugs and Bus Bar Wire: over two dozen big husky lugs which will drop off the wire all tinned for soldering if held in an alcohol flame a second. (12) And the crystal detector as your "souvenir." #### Converting for Short Waves A glance at the circuit shows the old reliable "stand-by," including both screen grid and capacity control of regeneration, followed by the standard single impedance-coupled two-stage amplifier. tubes are respectively: a 32 de-tector, a 30 as tector, a 30 as first amplifier, and a 31 as secon d amplifier. The extra cabinet might house the power-pack if A. C. tubes are preferred. Let's run Put your antenna and ground binding posts where they are most conven- ient for those outside leads. Mine are on the right end near the rear. The antenna condenser, C1, is the usual two brass angles with 1½" square faces set an eighth inch apart. The angles are set up at the rear of the tube shelf, underneath exactly between the coil socket and tube socket. See Fig. 4. If the con-denser is above the shelf, pointing up rather than down, you may scratch your-self or bend it Rear view of the rebuilt Radiola V, which has been very suc-cessfully used by Mr. Appelman for DX short-wave reception. through the circuit, considering the while changing coils. The coils may parts in their order. while changing coils. The coils may be the standard NA-ALD or wound like those described by Mr. Nelson G. (Continued on page 52) Schematic wiring diagram for building the 3-tube receiver. Picture diagram, showing in simplified fashion, the connections from one piece of apparatus to another in the 3-tube short-wave "stand-by" receiver here described by Mr. Appelman. # The "EASY-BUILD" S-W Su Above—looking down on the versatile short-wave receiver here described, which can be converted from regenerative to super-regenerative at the "flip of a switch." • With the tendency of operators of S.W. transmitters to operate on high frequencies, it becomes necessary for the S.W. fan to have a receiver that will give better results at these frequencies. While super-regeneration as a principle has been understood for a number of years and has been covered in many texts with all of its variations, it is now receiving the acknowledgment of the S.W. fraternity as the ideal set for use at all wavelengths below 20 meters. Readers interested in the study of super-regenerative receivers and circuits are advised to read SHORT WAVE CRAFT for December, 1932. The author at that time covered the various forms and types of circuits at length. The receiver described in the present article is novel in several respects. First, it can be used as a straight regenerative receiver, and by the flip of the double throw, single pole toggle switch can be made to "super." When Wiring diagram for the dual-role short-wave receiver here described by Mr. Denton, its constructor. a signal is tuned in simply test for the circuit that will give the greatest output to the amplifier or phones. This is really a radio set with two types of circuits, both of which can be tested on the same signal at practically the same time. The maximum sensitivity will be obtained when used superregeneratively when tuning in "C.W." signals. #### Band-Spread Tuning The simplified method of band spread tuning as described by the author in several of the S.W. receivers built lately is used. Letters from and talks with set builders indicate that this system is simple and has the advantage of not necessitating special coils. The size of the tuning condenser should be smaller for the real high frequencies and is satisfactory for use above 50 meters. In fact, the size of this condenser as specified is a compromise but it really works quite well. # Additional Amplification The output of the detector is trans- This "dual role" short-wave receiver, which can be changed by the flip of a switch from "regen-erative" to "super-regenerative," is particularly efficient for the reception of CW or code signals when operating on the super-regenerator principle, particularly on the lower wavelengths, or those below twenty meters. Phone stations may be tuned in by means of super-regeneration and the change-over switch operated to change the circuit to the ordinary "regenerative" type. In other words, at the lower wavelengths and on code or CW signals, the super-regenerative circuit shows the most marked gain in efficiency. The cost of this set is very nominal and any wave band can be tuned in by using suitable plug-in coils. former coupled to the audio stages that should follow, although a transformer with suitable characteristics can be used to couple the output of the detector to a pair of phones. Use an audio frequency transformer with a very high primary impedance. This is very necessary. A high impedance load in the plate circuit will give greater signal output to the phones or the audio amplifier input. #### Panel Layout The tank tuning condenser is mounted on the left hand side of the front panel and the double throw, # Parts List Two Eby 4 prong sockets (10, 15) One set Na-ald (or Octocoils) for S.W. Bands. mount in socket 10. One Hammarlund Equalizing condenser, 100 mmf. (9) Eight Fahenstock clips, (1, 2, 3, 4, 5, 6, 7, 8) One Hammarlund MC-140-M condenser, 140 mmf. (11) One Hammarlund MC-35-S condenser, 35 mmf. (12) One Illimi .000125 mf., mica condenser (13); (Polymet) One International Resistance 1 watt, 3 megohms, (14); (Lynch) One Aerovox .006 mf. mica condenser, 16; (Polymet) One Flechtheim By-pass condenser, 1 mf., 250 volts D.C. (21); (Polymet) One Flechtheim Tubular condenser .0015 mf., 1000 volts (20); (Polymet) One Silver Marshail Type 240 audio frequency transformer (19) One National tuning dial, midget type B One Acratest S.P.D.T. toggle switch Cat. No. 4104 (17) One Acratest toggle switch Cat. No. 4010 (23) One Frost volume control, type 6158 Acratest, 100,000 ohms (22); (Clarostat) One wooden baseboard 7x10 inches. Hammarlund MC-140-M condenser, one wooden baseboard 7x10 inches. One aluminum panel 7x10 inches, Blanthe-Radio-Man One Eveready-Raytheon type 32 screengrid tube, (R.C.A.) single pole switch that throws the circuit over from straight regenerative to super-regenerative action is mounted directly underneath. Tuning is done by means of the dial mounted on the panel in the center. The regeneration control resistor and the filament switch are mounted on the right hand side of the set with- If the signal does not sound so "hot" on the "regen"—flip a switch and then listen to it on the "super-regen" circuit. in easy reach of the operator. # Chassis Layout By CLIFFORD E. DENTON Every other part not mounted on the front panel is fastened down to the wooden baseboard by means of wood screws. The exact location of each part can be seen by reference to the photographs. The small 100 mmf. antenna series condenser should be mounted off the baseboard by means of a small brass collar. The only piece of equipment not held down to the chassis by means of wood screws is the 3 meg. grid leak and that is held in 3 meg. grid leak and that is held in place by the soldered pig-tail leads on the resistor. The photographs should be studied by the constructor so that all of the parts can be placed in the same relative position. No difficulty should be found in laying out the set and mounting the parts. #### Wiring There is but little to be said in regards to the wiring of the set. Use a good hot iron, and make sure that all connections are firmly and properly made so that there will be no sacrifice of signal due to poor connections. It is a good idea to wipe all connections with alcohol directly after soldering. #### Operation Anyone familiar with the operation and construction of a simple regenerative receiver will have no difficulty in (Continued on page 55) Physical wiring diagram showing how to connect the various component parts of the dual role receiver Left—The finished receiver. Right—Diagram of "cash-box" receiver. C1—5 plate triple-spaced or midget tuning condenser; C2—23 plate; C3—100 mmf. R1—2 megohms; R. F. C.—85 mh. choke. SW—switch. # C2 99 C2 REC L2 L1 R1 SW.— JACK CHASSIS (BOX) # A "Cash-Box" Receiver By JESS M. REED HERE is a receiver that takes an absolute minimum of parts, is extremely compact without being crowded, is fully shielded, and may be accurately calibrated for all frequency bands. The box is an ordinary all steel cashbox, 7x10x4½", obtainable in most chain stores. The lid fits snugly down to the sides, making the interior completely shielded from extraneous noises. A rebuilt eleven-plate condenser with triple spacing is used for tuning. A five-plate midget condenser will work equally well. The triple spacing or the use of a midget provides the necessary spreading of stations to prevent crowding on the dial. The coils are wound on tube bases. To remove the solder remaining in the prongs after the glass is broken out, heat the prong until the solder is liquid, then give a sharp flip of the wrist, which throws the solder out, leaving a clear hole for the fastening of the
coil ends. A table is given which shows the approximate turns for various frequency bands. A little experimentation is necessary to get the exact number of turns for a given band. Start with two turns more than specified, then remove one at a time until the desired band is fully covered by the dial. A vernier type dial should be used for ease of tuning. The antenna coupling coil is wound directly around the tube base which holds the plug-in coils. About five turns will provide sufficient coupling without making the set too broad in tuning. making the set too broad in tuning. The tube used is a '99 which, because of its low power consumption, enables a set of batteries to last for several months. A small size "B" battery is used for the plate, and a 4½ volt "C" battery furnishes the filament supply. Both batteries fit into the box, so care should be taken to get batteries of a small size. A chart was made by the writer using standard cross-section paper and pasted on the lid of the box. The various frequencies from standard frequency transmitting stations were plotted against dial settings and a curve drawn. This curve shows at a glance the frequency for each dial setting and makes stations easily located. The signals from this midget set are amply loud for head-phone reception. The sensitivity of the set is surprising. With this outfit aboard a ship in the Pacific Ocean, and using about twenty feet of antenna, signals were picked up from all parts of the United States as well as from Canada and Mexico. Commercial stations in Japan are easily recognized. (Continued on page 51) # Improving the Short-Wave Converter By R. W. TANNER • IN manufactured and home-constructed converters alike, very little, if any, attention has been centered upon the mixer or first detector. Certainly the elimination of cross-talk and image interference is as important as in a broadcast receiver. This is particularly true in the case of television reception, where the I.F. amplifier is sufficiently broad. Fig. 1—Diagram for using two-section band-pass filter (BPF) and a vario mu tube as a detector. C—Antenna coupling condenser, midget .000025 mf.; C1—Tuning condenser, coupling condenser .00005 to .0001 mf.; C2—I.F. coupling condenser .00005 to .0001 mf.; C3—Oscillator tuning condenser same capacity as C1; C4—Oscillator feed condenser .002 mf.; C5—.1 mf. bypass condenser; R—1000 ohm bias resistor; R1—2000 ohm bias resistor; L—First BPF section; L1—Second BPF section; L2, L3—Oscillator coils; RFC—Broadcast type R.F. Choke, 20-90 M. II. Fig. 2 shows how to use a 58 tube as a first detector in a short-wave converter. A band-pass filter interposed between the antenna and first detector grid is not an impossibility, even when tapped coils are employed. Image interference would then cause no trouble whatsoever. Furthermore, the operator would pick up fewer code stations; only those operating on their proper frequencies would be heard. If very loosely coupled, a band-pass filter will also reduce cross-talk to a minimum. However, we do not desire or need very loose coupling at this point, due mainly to the loss in sensitivity if the sections are adjusted to 8 or 10 kc. selectivity. A degree of 25 to 50 kc. selectivity is sufficient to eliminate of the section nate image interference, but this value would not prevent cross-talk. A combination of a two-section bandpass filter, with tuning condensers ganged, and a vario-MU tube as a first detector, results in very satisfactory image selectivity and reduction of cross-talk. Tube manufacturers have long recommended this type of tube, but few have taken advantage of it. A point worth mentioning in regard to the use of a vario-MU tube is the possibility of using the detector as a second harmonic oscillator at the short waves, due to the low grid-bias required. This is a very worth-while idea (Continued on page 49) # Tying Down the Audio Amplifier • Very often a most excellent short wave receiver is a misery to handle owing to the audio-end being "up in the air"; so instead of risking such a thing why not build the audio-end along the lines set out in the diagram, wherein it will be observed that everything is tied down to ground potential, with the result that no trouble whatsoever will be experienced from such things as body-capacity, hand-capacity, alteration of tuning when a hand is removed from a dial, and so on.—E. T. Somerset, (England). One of our English short-wave experts suggests the hook-up at the left, whereby everything is tied down to ground potential, thus eliminating hand-capacity effects, etc. # A Coupling Stage for "Plugless" Super Described herein is a pre-coupler for enabling short wave fans to use a doublet on a receiver using capacity antenna coupling. While primarily designed for use with the 9-tube plugless super appearing in the November 1932 issue of this magazine, it may be used as well with any set which uses a condenser to couple to the antenna. The manifold superiority of the The manifold superiority of the doublet type of receiving antenna over the other types has been put forth in SHORT WAVE CRAFT in several of the latest issues, so the writer need not dwell on this. It will increase the receiving range of any receiving set, and coupled to the author's super—Mars, maybe! The doublet antenna is highly resonant, and at its point of resonance receiver sensitivity and selectivity rise to a high degree. Using this coupler, the antenna is tuned right in step with the receiver, so that it is always in resonance with the desired wave. This, with the fact that the coupler also amplifies, and with the noise level lowered to the low degree that a doublet brings about, makes steady reception of those foreigns the actual thing. In procuring parts for the antenna coupler, try to secure a coil and con- # By WILLIAM J. VETTE denser combination identical with the ones in the first detector of the super or converter you are using the coupler with. For instance, in the case of the author's super, National "Equitune" Diagram above shows how to build a precoupling stage, so that a doublet antenna can be hooked up to an ordinary receiver. condensers, .0001 mf, and a Trutest coil assembly, were used. Therefore, in the coupler we shall use a coil and condenser just like the ones named, and wind the coils as near like the first detector coils as possible. These coils are wound as follows: For the 10-20 meter coil, wind 4 turns No. 16 wire spaced 3/32" on a bakelite tube %" outside diameter. For 20-40 meters, 10 turns No. 16, wound so as to fill %" along a tube of the same size as the 10-20 meter coil. For 40-80 meters, 14 turns number 20 wound the same as the 20-40 coil, on a tube of 1¼" diameter. For 80-200 meters wind 33 turns No. 26 over a length of 1½" on a tube of the same size. You may wind these coils on plug-in You may wind these coils on plug-in forms, of the right diameter, if you wish, or wind them on bakelite tubing and mount them on a switch assembly. If the latter method is used, the centers must be spaced at least 216" must be spaced at least 2½". The antenna should be coupled to these coils by means of a small coil, the size of which may be best determined by trial. Personally, I prefer a coupler such as is manufactured by the Lynch company, designed solely for use with doublet antennas. The construction of the coupling unit is not difficult, neither are there any rigid rules to be observed except that it must be shielded. The whole unit (Continued on page 61) # A Pyrex Glass Lead-in for Ten Cents Passing a store window advertising Pyrex glass cups, about three and a half inches in diameter, on sale at five cents apiece and noting the resemblance to the regular bowl shaped radio antenna lead-ins sold at quite a high price, two of these were purchased to see if a cheap but good lead-in could not be made from them. The principal thing to be done was to drill a hole in the bottom of each cup to take the assembly bolt. This was easily accomplished by cutting off a few inches of fe" copper tube from an old automobile oil line, straightening and filling with carborundum powder ground from a hand bench grinder and mixed with turpentine, then placed in a drill chuck. Either a power or hand drill can be used as but little pressure is required. A disc of sheet iron was cut of a diameter to fit near the bottom of the cup, with a five-sixteenths hole drilled in the center, to act as a guide for starting the hole, being removed later. A wood disc would do as well. Place a couple of teaspoonfuls of turpentine in the bottom of the Pyrex cup, set the guide disc in place and start the drill, held vertically of course. An annular groove the size of the copper tube will be formed in the glass due to the abrasive action of the carborundum powder; if the grinding action ceases to be noticed, file off the end of the tube, as this may have been worn round, place more abrasive in the tube and in the bottom of the cup and continue. Do not apply much pressure, especially when almost through the glass. When the drill comes through, reverse the cup and carefully grind through the other (Continued on page 55) How to use Pyrex glass cups to make a first-class "lead-in." Front and plan views of the easily built short-wave adapter here described by Mr. Scott. This efficient short-wave adapter is exceedingly easy to construct, with very little or practically no expense to the builder. The rig is used in conjunction with any type of tube receiver operated on battery current. Simply remove the tube from the receiver's detector socket; and replace it with the adapter plug-in base. Put the tube in the socket on the adapter. Then, but the battery clip on adapter. Then, put the battery clip on the antenna lead and you are all set for short-wave reception. Most amateur radio enthusiasts will, no doubt, have all of the necessary parts for this easily constructed adapter. One can find enough parts in an old dismantled
battery receiver to eliminate the necessity of making any expenditures for new equipment. # A Simple Short-Wave Adapter By CHAS. SCOTT, JR. The list of parts required is as fol- Wiring diagram for the short-wave adapter, the plug of which fits into the detector tube socket of the "B.C." receiver. - Panel, 7x12 - Baseboard, 10x11 Var. cond., 3 plate Var. cond., 11 plate Vernier dial - Ordinary dial - Grid cond., .00025 mf. Grid leak, 7 megohm Base from burned out tube Ft. single lamp cord Ant. cond. - Tube socket The circuit diagram and the drawings show all the necessary details. The tuning coil consists of seven turns and the tickler coil of four turns of No. 18 bell wire wound on a bakelite or cardboard tube, 3 inches in diameter and 2 inches long. The turns are raised from the surface of the tube by match sticks placed at ¾ inch intervals. The tuning condenser is made from one of the "One-Buck" low loss condensers cut down to three plates. Take the condenser apart and reassemble, using two stator plates and one rotor plate. The tuning is well spread out over a range of 33 to 45 meters. One meter will occupy a half-inch sector on a 4-inch dial, making it easy to find stations. The 11-plate condenser controls regeneration and has little or no effect on the tuning so that the receiver can be calibrated directly in meters. The "A" battery supply is taken from the receiver through the plug-in tube base which also carried the output of the cheet wave set into the receiver's of the short-wave set into the receiver's amplifier. The rheostat on the receiver controls the short-wave detector voltage. The regular antenna is used. Size doesn't matter much on these waves and the antenna can be left connected to the receiver while the short waver is The little antenna condenser consists of two brass or copper angles mounted as shown. A ground can be added to the positive filament lead as shown in dotted lines, but in most cases it will make very little difference in tuning or make very little difference in tuning or signal strength and can be left off. There is already a high capacity ground through the filament batteries and wiring in most receiver installations and the addition of a straight ground connection will merely shift the tuning a degree or so on the dial. The coil data given above is suitable The coil data given above is suitable for tuning in waves in the region between 33 to 45 meters. To the readers of this magazine, it will, of course, at once be apparent that any wave band desired may be tuned in by means of this simple adapter, by making use of the well-known "plug-in" coils. Data for winding these coils for the various bands and suitable for a certain specified capacity tuning condenser have been published in practically every issue. It is advisable to employ a small capacity midget conto employ a small capacity midget condenser, of 25 to 50 mmf. capacity, in series with the antenna in place of the fixed condenser. This antenna variable midget will be found a great help when the set fails to oscillate or when the dead spots occur. # Making a Switch to Change Bands How the band coil selector switch is wired. What to do with plug-in coils when building a cabinet set is a question. The photograph and diagram show a satisfactory method of group mounting the coils. The coils are not connected together, but are calested as originally intended. but are selected as originally intended. The four wires (F+, F-, G, P), from switch rotor are connected in the circuit in place of the plug-in socket shown in in place of the plug-in socket shown in the circuit diagram you are using. The radio "junk box" should furnish the necessary material. The dimensions of the three pieces of bakelite I used are, coil base 3½"x4½", switch panel 3½"x3½", switch rotor 1"x2", all cut from an old set panel. Switch contacts, rotor bushing, rod and knob from a vario-coupler. The switch blades are from a tube socket. Four wafer sockets for coils which in my case are sockets for coils which in my case are wound on tube bases. Two pieces of 1/2" angle brass each 3 1/4" long for holding base and panel together and to prevent coil prongs from striking set base. Six small bolts and nuts, a switch stop and some flexible rubber covered wire obtained from old lamp cord will complete the parts list. By compact mounting, well soldered connections and wires crossing at rightangles for minimum inductance when possible, the length of wire in the circuit hook-up is increased very little over a single socket. Photo, above, shows how the author built his band change switch, with the four coils grouped behind the switch. A similar switching idea is easily worked out for five and six prong coils. —S. M. Cook, Jr. Exterior view of the well-shielded 2-Volt, 3-Tube "Ham" Receiver, here described by Mr. Ewing. # A 2-Volt 3-Tube "HAM" Receiver By LEWIS M. EWING W8ECH A screen-grid short-wave receiver has many advantages over the usual detector and two-step audio type that many amateurs and short-wave listeners possess. The old receiver in use at this station was a good one in its day, but the very low prices prevalent in these times and the extraordinary success some of the local fellows were having with screen-grid receivers induced us to build a new set using screen-grid tubes. After considerable poring over the characteristics of the various tubes, the two-volt D.C. tubes were selected. They are cheap to install and operate and are ideal for portable receivers. The editors have received many requests from readers asking for a 2-volt, short-wave receiver design, using preferably no more than three tubes. Here's just such a set; it was built and tested very successfully by Mr. Ewing, a licensed S-W operator. The author explains how to provide a "smooth-as-silk" regeneration control, the "Waterloo" of many short wave sets. grid detector by means of a combined primary and tickler coil. In addition to this novel feature the tickler or feedback coil is removed from its usual position in the detector plate lead and placed in the screen-grid circuit. This is clearly shown in the diagram of the receiver. 32 R1 32 R2 30 R3 9V. = 30 R5 C4 R.F.C. (7 30 R.F.C. R3 9V. = 30 R8+ 2V. A- 2V. A- 8+ 90V. 135 V. Wiring diagram for the 2-Volt Receiver, which employs three tubes; it possesses very smooth regeneration control. The only major disadvantage found was the high plate resistance of the type 32 tubes. For this reason impedance-matching to secure maximum efficiency and tone quality was out of the question. However this mattered but little as this station is interested mainly in C.W. (code) work. On first consideration a screen-grid detector stage using the type 32 and over the type 32 and typ On first consideration a screen-grid detector stage using the type 32 and one stage of audio was thought sufficient for our needs. But one of the above mentioned amateurs called our attention to a receiver described in the December, 1931, issue of QST and to the circuit of the Pilot Universal Super-Wasp, which was explained in SHORT-WAVE CRAFT some months ago. Briefly, the circuit utilizes a stage of screen-grid radio frequency amplification, which is coupled to a screen- The number of parts required for the screen-grid R.F. stage was so small, and the advantages of such a stage were so obvious, that the use of this amplifier was felt necessary, especially since the novel method of coupling eliminated any difficulties in getting this stage to work properly. In order to get maximum amplification from the R.F. stage though, the impedance of the combined primary-tickler coil should be made as large as possible. The number of turns is limited, however, by the ease with which the detector oscillates. In addition the ratio of the primary to the grid coil should allow some voltage step-up in the R.F. transformer that these coils form. With the purpose of increasing the impedance of the primary-tickler coil, a larger than usual number of turns was put on "space wound," and the spacing between the two coils was increased to at least three-eighths of an inch. This spacing must be determined by experiment. This increase in spacing allows several more turns than usual to be used on (Continued on page 45) Interior view of Mr. Ewing's 2-Volt Receiver which employs two 32 type and one 30 type tubes. Arthur Batcheller, radio inspector of the 2nd district, at his desk in the Sub-Treasury Building, New York. As holder of this office for many years, Mr. Batcheller, himself a pioneer radio amateur, has licensed probably more "Ham" operators than any other man in the world. Numerous letters received from members of the SHORT WAVE LEAGUE indicate that many prospective amateurs are not familiar with the proper method of obtaining government licenses for amateur short wave transmitting stations. Much confusing information is evidently being circulated—not intentionally, of course—by "old-time" amateurs who do not know that the government machinery for radio administration is altogether different from what it was only a couple of years ago. of years ago. First let's get the matter of operator and station licenses straightened out. If you, as an individual "ham", want to go on the air, you need an operator's license, which involves a code test and a simple technical examination, and a station license, which requires nothing more than an application blank. Full details of the operator's license requirements were published on page 346 of the October, 1932 issue of Short Wave Craft, so need not be repeated here. PLEASE REFER TO THIS ISSUE AND READ THE REGULATIONS VERY CAREFULLY AND THOROUGHLY. Here is the answer to hundreds of inquiries received by the editors and the answer to hundreds more, which you will not need to write, after studying the information given in the accompanying article by Bob Hertzberg. Just how to go about obtaining an amateur radio operator's license, as well as a station license, is
clearly explained. The nearest U. S. Inspection District to your location can also be found from the appended list. # How to Get LICENSES for Amateur Radio Stations # By BOB HERTZBERG A few additional notes in this regard are pertinent. There are no restrictions as to age, sex or color, as long as the applicant is an American citizen. Boys of 10 and bearded men of 80, and a goodly sprinkling of girls, are numbered among the amateur fraternity. Please note from the article in the October number that if you live within 100 miles of an examining office, you MUST take the operator's test in person, unless you are physically disabled. At any event, write to the nearest Radio Inspector and find out when examinations are held. If you are in the disabled class, explain your situation thoroughly. There are now twenty inspection offices; previously there were only nine. A complete list is attached to the end of this article. Make sure of your county and state before writing. This sounds like needless advice, but it is quite necessary, as some people don't seem to know where they live! A hitherto unpublished view of the examination room of the 2nd radio district, located on the third floor of the Sub-Treasury Building, Pine and Nassau Streets, New York, N. Y. The applicants sit at small but comfortable tables, and take the code test with single head phones. The first part of the operator's license examination is the code test. Here's a tip: do your practicing at home with only ONE phone, as the phones at the inspector's offices are single units. If you do all your practicing with regular double phones, and then take the exam with a single phone, you're quite likely to become horribly confused. The code sending of the test message is done by machine, is precise and accurate and lasts only a few minutes. If you pass this test, you are given the theoretical part, which will take possibly 1½ to 2 hours. If you fail the code test, or fail to get a passing mark for the entire examination, you must wait three months for a second chance, so bone up in advance! If you pass the whole test, you are given your operator's license immediately. You then ask the inspector for a station application blank, which you (Continued on page 48) The reward of success: amateurs receiving their operator's licenses from Charles Mencher, in the office of the 2nd district radio inspector, immediately after passing the examination. # Building a Depression **Transmitter** By JOHN T. FRYE, W9EGV Above—Mr. Frye's transmitter which has accomplished some wonderful "DX" results at his station. Left, antenna tuning condenser, also antenna, plate and grid coils; tank condenser on right. Grid-condenser and grid-leak appear in front of the tube; plate choke at rear to right of tube. Mr. Frye here regales us with a very appetizing tale—"How To Build An Amateur Transmitter At Depression Prices!" Mr. Frye built his transmitter with parts obtained from an old radio receiving set, which cost fifty cents. The market is full of such sets at bargain prices—so hop to it! Is this depression keeping you from building a transmitter? It need not building a transmitter? It need not any longer, for I can tell you how to build a transmitter and power supply that will actually "get out," that is the acme of simplicity to construct and operate, and best of all, that costs less than the average "junk-box" receiver. #### Probable Cost 50 Cents! The first thing on the program is a pilgrimage to some radio mart where old battery sets are taken in for new receivers. Now these sets are a drug on the market, and many dealers do not even attempt to resell them; therefore you should be able to secure for about fifty cents an old set that contains the following parts: Two .0005 mf. tuning condensers of sturdy construction and good insulation, A .00025 mf. grid condenser, Two dials, and One UV or UX socket. In addition to these parts, you will need three .006 mf. fixed condensers, one 60 ohm center-tapped resistor, one 25,000 ohm grid resistor, and about fifteen feet of No. 10 copper wire or larger. (Copper tubing is preferable pilgrimage to some radio mart where fifteen feet of No. 10 copper wire or larger. (Copper tubing is preferable if it can be secured.) We are ready to start building the transmitter. First, secure a board 8"x12" and give it two or three coats of clear shellac. Next, saw two 4"x7" strips from the panel of the old receiver and mount the condensers upon them. These pieces, bearing the condensers, are mounted at opposite ends of the front edge of the base-board. The socket is mounted directly behind the right-hand, or tank condenser. the right-hand, or tank condenser. #### Winding the Coils The next task is the winding of the coils. These coils are three inches in diameter and the turns are spaced about a quarter of an inch apart. For eighty meters, the grid and plate coils have five turns each, and the antenna coil has seven turns. They are mounted on a strip of bakelite and are spaced one-half inch apart. This mounting is accomplished by drilling holes through the flattened ends of the wire and running brass bolts through these and corresponding holes in the bakelite strip. These coils should be .0005- 25,000 OHMS .00025 - S .006-MF TURNS KEY 101 7 - 00035-6 B-006-ME .006-MF فعففف 00000000000000000 Diagram for "Depression" transmitter de-scribed by Mr. Frye. l'late Supply. Front of Board, left to right: Switchboard, including line switch and primary tap switch; socket and flash-light bulb used as fuse. Filament transformer with center-tapped 5 volt winding and 2.5 volt winding. Output binding posts with bleeder assembly, including fixed and variable resistors. Back row, left to right: l'late transformer; socket and BH tube; first filter condenser (behind filament transformer); choke; second filter condenser. set up from the strip with small wash- Small brass angles are used to raise the coils about two inches from the base-board. This entire assembly is mounted with the antenna coil at the mounted with the antenna coil at the left at the rear of the board. Next, comes the construction of the choke. It consists of simply 200 turns of No. 28 or No. 30 wire wound upon a suitable length of shellacked broomhandle. The choke is mounted by running a brass screw up through the baseboard into the broom-handle in the right rear corner of the based. the right rear corner of the board. Eight binding posts should be mounted along the rear edge of the board. By following the diagram closely, you should encounter no difficulty in the actual wiring of the transmitter. Care should be taken, however, to keep all leads as short as possible, and the tank leads should be of the same material as the inductances. The .006 mf. coupling condenser should be mounted directly across the adjacent ends of the plate and grid coils. #### Power Supply Now that the transmitter is completed we may turn our attention to the construction of the power supply. To secure the necessary parts, another trip to the radio shop must be made. (Continued on page 50) How the code teaching apparatus here described by Mr. Doerle looks, when neatly assembled on a base-board. • YOU fellows recall the time when broadcasting was in its infancy and you stayed up late to catch the last call on the air, just for the sport of breaking another DX record and finding another thrill from your receiver. And perhaps with much regret, just as the station announcer gave the call letters, you would also hear the clarion call of your better half, partially asleep in bed, saying with disgust, "John, it's 2 a. m. and you've got to be up at six." With "equal rights" being breathed into your lungs and many warrangers. With "equal rights" being breathed into your lungs, and many women's voices expressing their sentiment via radio even in the political conventions, it's time you fellows got your family into the short-wave game and this includes your wife. You've got all to gain—even "Home Sweet Home"—and surely nothing to lose. # A Few Facts Furthermore, another great fact is brought to your attention. While the broadcast field has developed by great strides, things are happening in shortwaves at so high an exponential power of growth that the pile of accumulated facts is dazzling. Surely with this kind of progress, you don't want to miss the thrills of short-waves, and you too want to share these thrills with the family. The ether is teeming with short- # Come and Enlist in the Short-Wave "Code" Army By WALTER C. DOERLE A number of practical hints on how to learn the code are here given by Mr. Doerle, already well-known to our readers. Mr. Doerle describes a tube-type code teaching instrument, which you can easily construct from odd parts in your work-shop. The simplest set of code characters which everyone should learn—the alphabet and numerals from one to zero. wave vibrations, to wit, 5 meter code, 10 meter code, 20 meter code and 'phone, 40 meter code, 80 meter 'phone and 160 meter 'phone, and this is only an introductory list of the short-wave signals. Perhaps you are still up in the air as to "how" to get in on the ground floor of transmitted code signals. As for 'phone signals of course no special training is necessary. # How To Do It The accompanying photograph shows the arrangement of the few radio parts required to make a good code-learning set. The hook-up shows its principle of operation—just the old style regenerative hook-up, with one stage of audio amplification adapted to a new use. It generates an audio frequency signal, by which the customary "dots" and "dashes" of telegraph code may be imitated. Wiring diagram of the code teaching instrument made from a couple of A.F. transformers and two tubes. In the diagram, tube VI is the audio frequency oscillator and by "making" and "breaking" its plate current with a regular telegraph key at points X and Y, the amplified audio frequency sound from the loud speaker at points C and
D is automatically turned "on" and "off." Thus if a "dot" is made with the depressed key at points X and Y, the "dot" sound comes from the phones or speaker at points C and D; and if the key is held down long enough for the "dash," the "dash" sound is heard. Comparing this code-learning set to that of a short-wave regenerative receiver: it generates its own audio frequency note, while the beat-note for reception is made by the difference in frequency of the transmitted signal and that generated by the regenerative set. Because of the large values of inductance and capacitance of the windings of transformer T1, the frequency generated comes at the low-note end of the audible range. For fear of overlooking a fact upon which the operation of this code-learning set depends, your attention is called to the importance of connecting the plate terminal of tube VI to the "B" terminal of the transformer T1, so that you get the "tickler" action of the transformer winding. In other words, connections to the primary winding of T1 are reversed. ### Hints On Construction Since the photograph clearly shows the arrangement of the parts on the plywood baseboard and the hook-up diagram indicates the few simple but marked connections, it seems quite unnecessary to list a long column of constructional details, so a few words will suffice. As the baseboard is nailed or screwed onto end cleats of sufficient height to permit the filament rheostats to be mounted under it, it would be very tiresome to "work" the key for any length of time and that is the reason for mounting the key on a piece of wood separate from that of the baseboard of the set. Let the key-knob serve as one (Continued on page 51) # A Home-Made Micrometer • A GOOD micrometer is much too expensive for the average radio builder to buy when he gets the urge to try his hand at grinding crystals. Some means of measuring the thickness of the quartz plate is essential in order to keep track of the hills and valleys which develop in spite of efforts to keep them out. Fig. 1 shows a device which can be utilized as a substitute for a micrometer. The action, or principle, is similar to the more expensive ones and, for the purpose, is quite satisfactory. The readings obtained are comparative, that is, the total thickness of the crystal cannot be obtained, but the thickness of one part compared to another is easily observed. The dial may be any spare dial; preferably one with divisions marked all the way around the edge. An ordinary six or eight thirty-two machine screw is prepared by sawing off the head and filing the ends flat. Fill the shaft hole in the dial with hot sealing-wax, then, before it hardens, place the machine screw in position. This device will admirably serve the purpose for amateur crystal grinding. —By Jess M. Reed. A micrometer which can be made from a couple of machine screws and a radio dial. 1—Selectivity control; 2—Phasing condenser; 3—I.F. "peaking"; 4—Crystal in plug-in mount;. 5—"Series"-"Parallel""Off" switch. In the April issue, the new National FB7 superheterodyne was described, together with photos and wiring diagram of the complete 7-tube set. For many amateur requirements it is desirable to have a set respond with extreme selectivity to a single signal frequency, particularly in C.W. work. The accompanying photos show a crystal filter circuit attachment which can be fitted as shown to the FB7 receiver, so as to make it a single signal receiver, which is then known as the FBX model re- The use of a crystal filter connected in the I.F. amplifier in order to obtain an exceptionally high order of selectiv-ity is desirable under certain circumstances. The idea is by no means new, having been incorporated in the Stenode receivers for several years; but its application to high frequency C.W. recep- plication to high frequency C.W. reception is comparatively recent. Briefly, a properly designed and adjusted filter connected in series with the input of the I.F. amplifier, will pass only a very narrow band; the width being measured in cycles rather than kilocycles. The fundamental circuit, as shown in the accompanying diagram, is seen to be in the form of a capacity bridge, the function of Cs being to balance (or neutralize) the capacity of the crystal holder, and that of Cr being to tune and center tap the secondary cirtune and center tap the secondary circuit. In addition, the adjustment of CT has a marked effect upon the width of the response characteristic, enabling the operator to vary it at will from a few cycles to several hundred. # The FBX "Single Signal" S-W Receiver **Created by National** How the FB7 Superheterodyne Receiver is converted for "Single Signal" Work It is evident, from the foregoing discussion of selectivity, that such an extremely narrow I.F. response characteristic will allow the complete separation of stations differing in frequency by only a small fraction of a kilocycle, by only a small fraction of a knocycle, provided the beat oscillator is correctly adjusted. To carry the discussion further, suppose the beat oscillator is tuned to 502 kc.; that is, 2 kc. from the I.F. (crystal); the 10,500 kc. signal will be tuned in as before, but now should the signal circuits be changed only a few cycles say 50 the signal will should the signal circuits be changed only a few cycles, say 50, the signal will be completely detuned. The beat note resulting when the signal circuits are tuned to 10,504 kc. will now be so weak as to be negligible. In other words, any given signal may be tuned in at only one definite adjustment of the signal oscillator, and the audio response will depend solely upon the detuning of will depend solely upon the detuning of the beat oscillator from the I.F. In the above case, all signals will peak very sharply at 2000 cycles. While the re-ceiver sounds to the ear similar to the older regenerative detectors with a sharply peaked audio amplifier, the principles involved are quite different, (Continued on page 59) "Band-spread" coil tuning curves. SETTING Close-up of "single signal" attachment. Connections of the quartz crystal filter used for "single signal" operation. # \$20.00 Prize Monthly For Best Set THE editors offer a \$20.00 monthly prize for the best short-wave receiver submitted. If your set does not receive the monthly prize you still have a chance to win cash money, as the editors will be glad to pay space rates for any articles accepted and published in SHORT WAVE CRAFT. You had better write the "S-W Contest Editor," giving him a short description of the set and a diagram. BEFORE SHIPPING THE ACTUAL SET, as it will save time and expense all around. A \$20.00 prize will be paid each month for an article describing the best short-wave receiver, converter, or adapter. Sets should not have more than five tules and those adapted to the wants of the average beginner are much in demand. Sets must be sent PREPAID and should be CAREFULLY PACKED in a WOODEN box! The closing date for each contest is sixty days preceding date of issue (May 1 for the July issue, etc.). The judges will be the editors of SHORT WAVE CRAFT, and Robert Hertzberg and Clifford E. Denton, who will also serve on the examining board. Their findings will be final. Articles with complete coil, resistor and condenser values, together with diagram, must accompany each entry. All sets will be returned prepaid after publication. REQUIREMENTS: Good workmanship always commands prize-winning attention on the part of the judges: neat wiring is practically imperative. Other important features the judges will note are: COMPACTNESS, NEW CIRCUIT FEATURES, and PORTABILITY. The sets may be A.C. or battery-operated. Straight Short-Wave Receivers, Short-Wave Converters, or Short-Wave Adapters. No manufactured sets will be considered: EVERY SET MUST BE BUILT BY THE ENTRANT. Tubes, batteries, etc., may be submitted with the set if desired, but this is not essential. NO THEORETICAL DESIGNS WILL BE CONSIDERED! The set must be actually built and in working order. Employees and their families of SHORT WAVE CRAFT are excluded. Address letters and packages to the SHORT WAVE CONTEST EDITOR, care of SHORT WAVE CRAFT Magazine, 96-98 Park Place, New York, N. Y. # Short-Wave Beginner How to Build a Simple 3-Tube Receiver, Which Uses a Switch Instead of Plug-in Coils to Change the Wave Bands it Tunes to. IN PAST issues we have described the construction of a complete shortwave receiver, beginning with one tube and gradually building it up to three tubes, adapted for operation on batteries or with a power unit. In making this receiver, we accumulated a working knowledge of short waves, and learned how to follow wiring diagrams, etc. We also learned, in a general way, the purpose of each part in the set. We are now ready for a more am-bitious job—the construction of a neat three-tube receiver using the most up-to-date tubes, parts and ideas. This set will do away with the annoyance of having to plug-in a new coil every time we desire to change from one wave-band to another. By simply turning a switch on the panel, this shifting is accomplished. In appearance, too, the set is a distinct improvement over the other we built. It is made on an aluminum base, with an aluminum panel, and practi-cally all the wiring is "below board" where it does not show. Because of the switch feature, it may be mounted # No. 11 of a Series By C. W. PALMER in a neat little cabinet and be an asset rather than a liability to the appearance of the room in which it is used. #### The Tubes In selecting the tubes, from the large number of new ones available, a group was chosen that may be used with either alternating current or batteries on the filament. In this way, it may be completely "power-operated" with a suitable "B" power unit, such as the one described in the January 1933 Short Wave Beginner article, and a filament transformer supplying 6.3 volts. It may also be operated from volts. It may also be
operated from dry "B" batteries for the plate supply and a "6 volt" storage battery for the filaments. The set uses a pentode tube as a radio frequency amplifier; a screengrid detector and a pentode audio frequency tube. The combination of these three supplies sufficient volume to operate a loudspeaker on all but the most distant stations. Due to the pentode radio frequency amplifier, it is very sensitive to weak stations—and best of all, it is quite simple to tune, as it has only one tuning knob and the regeneration control. #### The Coils for 14 to 195 Meter Coverage The coils used in the original model shown in the photographs are homemade, but commercial coils such as the "Octo" coils may be employed by removing the primary winding and connecting the secondary and tickler coils as shown in the diagrams. Four coils are used to cover the wavelengths from 14 to 195 meters. They are all wound on forms three inches long and 1% inches in diameter. The first coil covers the wavelengths from 14 to 30 meters and contains a grid coil of 5 turns of number 14 enamelled wire space wound to cover one inch of the form. The tickler or plate coil contains 6 turns of number 28 enamelled wire, close wound. The latter coil is wound below the secondary with 1/16th inch spacing between. ary with 1/16th inch spacing between. The second coupler has a secondary of 12 turns of number 14 enamelled wire, spaced to cover 1½ inches and a tickler of 8 turns of 28 enamelled wire close wound. The third has a secondary of 26 turns of number 14 enamelled wire, spaced over 2½th inches and a tickler of 12 turns of number 28 enamelled wire, close wound. The largest coil contains 45 turns of number 24 enamelled wire spaced over ber 24 enamelled wire spaced over 1½ inches of the form, with a tickler of 20 turns of number 28 enamelled wire, close wound. The four coils are shown in one of the diagrams. # Building the Set The first thing to do in building any receiver is to collect all the parts. The parts listed below were used in the original model of the set. 3—R.F. Chokes—National type 100—L1, L2, L3. (2.5 millihenries each.) 1—Set of four coils—described in the text—L4, L5. the text—L4, L5. 1—Tuning condenser—National SE100—C1. (Cap. 100 mmf.) 3—.0001 mf. fixed condensers— Polymet C2, C3, C7. 4—.01 mf. by-pass condensers—Polymet C4, C5, C6, C8. 1—.5 mf. by-pass condenser—Polymet C9 met C9. 1-500 ohm (10 watt size) Lynch resistor-R1. resistor—RI. 1—5 megohm grid leak—Lynch—R2 1—50,000 ohm wire wound potentiometer—Clarostat—R3. 1—20,000 ohm resistor (1 watt size) Lynch—R4. 1—250,000 ohm resistor (1 watt size) Lynch—R5. 1—1 megohm grid leak Lynch—R6. 1—2,000 ohm resistor (10 watt size) Lynch—R7. The line drawing above shows, in the upper left-hand view—a top plan view of the receiver; in the upper right-hand corner—details of the coils used; the lower diagram shows schematically the connections of all the parts in the 3-tube receiver. The photos above illustrate the neat and well arranged 3-tube beginner's receiver here described by Mr. Palmer, and which employs a switch to change the wavebands instead of "plug-in" coils. -5-prong Tube sockets-Eby. 9—binding-posts—Eby Jr. 1—Band Selector Switch—"Best" (or Eby). (3 sections-4 contacts each.) 1—39 Tube—Triad—V1. 1—36 Tube—Triad—V2. 1—38 Tube—Triad—V3. 1—Aluminum chassis 8 by 10 inches by 1½ inches high—Blan. 1—Aluminum panel 8 by 10 inches -Blan. 4—pieces of bakelite tubing—1 % by 3 inches—Blan. -Dial-3 inch diameter-National type BM-3. 14 lb. No. 14 enamelled wire. 14 lb. No. 24 enamelled wire. 14 lb. No. 28 enamelled wire. 1—roll of hook-up wire. As required—angles, screws, soldering lugs, etc. After the parts have been collected, lay them on the aluminum chassis in the positions shown in the photographs and diagrams. Mark the holes with a center punch or a scribe and drill them. As the positions for the holes vary with each make of parts used, it is useless to show exact positions for them. We have had sufficient experience, after building the other receiver, to layout the holes without any difficulty. The drilling of the holes, especially the ones for the tube sockets, will be more difficult than with our previous sets, because of having to drill through the property of the sets of the sets. aluminum. For this reason, if possible you should have the socket holes drilled by the store or supply company where the chassis and panel are purchased. However, for those who are ambitious, it can be done without the use of special tools, by first marking the circle of the required size with a compass or dividers and then drilling a number of small holes around the circumference of the circle. The center piece can then be knocked out and a file used to clean up the rough edges. It is important to place the parts in the positions shown, to keep the leads short and to prevent bodycapacity or other defects in the opera- After all the parts have been mounted in the positions shown, the set is ready to be wired. Most of the wiring is quite easy to follow, so we will not describe how to connect each wire. Either the picture or schematic diagram may be used. wiring to the band selector switch, however, is a little difficult; so we will explain it in detail. #### The Band-Selector Switch This switch really consists of three separate switches mounted on one shaft, so that they can all be turned at one time. The first section switches one side of the secondary coils (grid coils) from one band to another. one side of each of these grid coils is connected to the chassis, it is not necessary to switch this side of the coils. They are connected permanently to the chassis as shown in the diagrams. The second section of the switch changes one side of the tickler or plate coils from one to another at the same time that the secondaries are being changed, and the third section shifts (Continued on page 59) Picturized wiring diagram for the newcomer in the short-wave game, illustrating how the various apparatus comprising Mr. Palmer's 3-Tube "Plug-less" Receiver are connected. # LETTERS FROM S-W FANS #### IMPROVES THE DOERLE Editor, SHORT WAVE CRAFT: In the August issue of Short Wave Craft you were kind enough to publish a letter of mine about my success with the Doerle receiver. Since then I have made changes that have greatly improved the set, both in efficiency and ease of operation. I would like to tell you the results I have had with this set, from March I to Sept. I have heard Australia, Japan, Indo-China, Philippine Islands, Russia, Brazil, Argentina, Colombia, Ecuador, Mexico, Canada, Hawaii, France and Spain, And China, Philippine Islands, Russia, Brazil, Argentina, Colombia, Ecuador, Mexico, Canada, Hawaii, France and Spain. And Amateurs! My oh my! I have heard them from New Jersey to Los Angeles and from Calgary to Texas. I have received KKP in Hawaii and W3XAL, W1XAZ, W2XAF, many times on the loud speaker. W3XAL, W1XAZ, W2XAF, I can receive them on the earphones almost every day, without any aerial at all. No wonder I feel a little proud, thrilled, and highly excited, to hear programs from halfway around the world, through the small 2-tube set that I built. through the small 2-tube set that I built Such is the magic of short wave radio! And what I knew about radio could be written on a postage stamp; (to illustrate) it took me two hours to connect a filament voltmeter to the set. In closing, I would like to say that SHORT WAVE CRAFT mag-azine should be on every short-wave fan's A. P. VENTURA 637 Porter St., Vallejo, Calif. (Thanks very much, A.P.V. for your informative letter and diagram which we are publishing herewith, for the benefit of other short wave fans. We are pleased to hear of the vast array of short wave stations you have heard on your improved Doerle receiver. Again, thanks for your good wishes and we trust you will hear "plenty" more DX stations and get oodles of thrills with the "Doerle" 2 tuber.—Editor.) Ventura's hook-up for "Doerle" receiver. improved # WHOLE WORLD ON "1-TUBE MEGADYNE! Editor, SHORT WAVE CRAFT: Recently I had the pleasure of seeing my letter published in your magazine. I am writing you this letter to let you know about other stations the Megadyne has pulled in since then. Stations. W8XK, Pittsburgh; W1XAZ, Springfield; W2XAF, Schenectady; W3XL, Boundbrook; W3XK, Pittsburgh; W3XAL, Boundbrook; W9XF, Chicago; W8XAL, Cincinnati; W3XAU, Philadelphia; W4XB, Miami; W1XAL, Boston. In Canada: VE9GW, Bowmanville and VE9JR, Winnipeg. In Colombia, S. A.: HJ3ABF, Bogota, HKD, Barranquilla. In Venezuela: YV1BC, Caracas. In Brazil: PSH, Rio de Janiero and PRBA, Rio de Janiero. In Argentina: LSX, LSN, and LZA, all in Buenos Aires. In England: two new stations of the BBC. I have not heard their call letters. They are on 31.3 and 49.6 meters. In Rome: I2RO. In France: FYA. Pontoise. In Germany: DJC, Berlin. In Switzerland: HBP, Geneva, League of Nations. In Spain: EAQ, Madrid. In Australia, VK2ME, Sydney. The telephone stations in the U. S. A. are WMF, WAJ, WEF, WKJ, WOO, WNB, WND, WOK, WNA, WOA, WEJ. WOB, WOO, WAD, WEM, and WQN. The telephone station #### **CURRIE'S 5-TUBE SET** MARVELOUS! Editor, SHORT WAVE CRAFT: About five days ago I completed Mr. Burton Currie's 5-tube De-Luxe Radio Frequency Short-Wave receiver, described in the January issue of SHORT WAVE CRAFT. I want to congratulate you and Mr. Currie for giving the short-wave fans this excellent receiver. It certainly is a winner! I have built quite a few short-wave re-ceivers such as: Stand-By Receiver, Su-perregnode, Copper Clad Special, Mr. Bryan's Automobile Short-Wave Receiver, Bryan's Automobile Short-Wave Receiver, Megadyne, and others, but none can be compared with this job. Foreign stations coming in just like "local" ones, with the volume control barely turned on! This is just like tuning a regular broadcast receiver. I have received the following stations with plenty of volume to spare: British Empire Stations, GSA, GSD,
and GSC; French Stations FYA on 19 meters and FYA on 25 meters; YV2BC, Carracas, Venezuela; 12RO, Rome; EAQ, Madrid; VK3ME, Melbourne; VK2ME, Sidney; and Berlin on 25 meters. I listen to these stations regularly and have been since I built the set. set. On Sunday, February 19, between 5 and 6 a. m., 1 was listening to VK2ME. Sidney, on 31.28 meters, while GSC, London, was on the air on 31.29 meters. Both stations were coming in fine and clear! I have been a reader of SHORT WAVE CRAFT since 1930, and I can hardly wait until it appears on the newsstand for the until it appears on the newsstand for the next issue. At the present time I am building the Cage Aerial (space limited) with transposed lead-in wires, and with Mr. Currie's set and this aerial, I am sure I will enjoy "real" short-wave reception. Anyone who wants to build a real short-wave should build Mr. Currie's 5-tube, tuned radio frequency receiver. I wish SHORT WAVE CRAFT overy success. success. Very truly yours MARTIN MULLER, 213 S. Metropolitan Avenue, Atlantic City, N. J. (Mighty glad to receive such a glowing tribute to the ingenuity of Mr. Currie. That set looked pretty good to us and after reading of the wonderful results you after reading of the wonderful results you had with it, we are still more impressed with the argument now going on in one of the English radio publications, that the T.R.F. sets always give a good account of themselves when tested side by side with the super-hets. Let's hear from some more builders of the Currie T.R.F. 5-Tube Receiver.—Editor.) in Canada is CGA in Drummondville. The telephone stations in England I have heard are GCB and GBB. The telephone stations in the Bermudas I have heard are ZFA and ZFB. The telephone station in Venezuela I have heard is YVR in Maracay. A new station in the Bahamas is VPN who telephones Miami. It is on about 70 meters. In Ecuador, PRADO, in Diobamba. Mr. Whitmer's efficient looking station. Just to let you know how the "one tuber" is coming along and wishing good luck to your magazine. JACK JONES, JR. Tupelo, Miss. (Marvelous work with the short wave Megadyne, Jack! We were certainly surprised at the very fine DX results you obtained with this set. Apparently, you must have used parts of the best quality and also the crystal detector must be a "cuckoo." Let's hear from you again, especially if you should make any new changes in the Megadyne circuit.—Editor.) #### SEND US MORE "STATION" PHOTOS! Editor SHORT WAVE CRAFT: Received my March issue of SHORT WAVE CRAFT yesterday and noted with interest that you ask for pictures of S. W. Listening stations, so I am enclosing a photo of my station. I will describe it: the receiver is a converter-broadcast receiver combination, composed of a Stewart-Warner model 301-A converter, used in connection with an Atwater Kent model 55 broadcast receiver. In the corner in back of "yours truly" is the speaker of the A. K. 55 mounted on a 30 inch square baffle so as to reproduce the bass notes better, since I have added tone control to the A. K. Verification cards of my best catches are posted Received my March issue of SHORT WAVE fication cards of my best catches are posted at random on baffle and walls. It might be of interest to say that this picture was taken by myself, of myself. Being an amateur photographer I also developed and printed it. I am making this letter serve a dual purpose in that I am going to ask you to assist me in becoming a member of the Short Wave Leacue. I am a student in the R. C. A. Institutes, Inc., of New York and am an experimenter with short-wave receivers. I am also a broadcast service man and am secretary and treasurer of the Radio Service Men's Association of this city. I think that your magazine SHORT WAVE I think that your magazine SHORT WAVE CRAFT is without a doubt the best one in its field. It fills a great need in that it contains information that we short-wave experimenters would be at a loss to know where to find, if it were not for SHORT WAVE CRAFT. I especially appreciated the short-wave tuning charts (wave-length, inductance and capacity charts giving coil and wire sizes, etc.) in the March issue. Assuring you of my cooperation, I remain, Respectfully yours, E. LLOYD WHITMER, 121B S. E. 4th St., Evansville, Ind. ("Fine business"-O. M. Let's have some nore photos of those short wave listening stations and "ham" (transmitting and receiving) stations also. We will endeavor to use all of these we can. Your SHORT WAVE LEAGUE application has been attended to and your certificate sent.-Editor.) ### \$5.00 Prize CONDENSER GANGING CONDENSER GANGING The method used in ganging two condensers as shown in this drawing is nothing new. After many an attempt and equally as many failures, at cutting a bakelite disk of this purpose, I conceived this idea of using some of the odd dozen tod disk for this purpose. I conceived this idea of using some of the odd dozen tod disk in my junk-box. There are dutted a few of the old disk (three and four-inch) hard rubber or bakelite, which have a brass shaft bushing (note drawing). I find it easy to make this disc or drum, as you might tail it, by filing the good of the condition con ## HEATER SUPPLY I was recently building a 4-tube A.C. receiver, but I lacked a filament transformer. I solved my problem by removing the power transformer from my power supply and winding five turns of No. 12 D.C.C. copper wire over the high voltage "B" winding. This gave me enough amperage to supply four 2½ voit tubes. This method can be utilized for different voltages by varying the number of turns—tenaldo Karas. ## HOW TO USE TWO AERIALS I have here two aerials. One is about ten feet long and the other about fifty feet long. When using the short one I have very good regeneration, but the signal strength is not as great as with the long aerial; with the long aerial the signal strength is appreciably greater but the regeneration is poor. By merely con- ## \$5.00 For Best **Short Wave Kink** The Editor will award a five dollar prize each month for the best short-wave kink submitted by our readers. All other kinks accepted and published will be paid for at regular space rates. Look over these "kinks" and they will give you some idea of what the editors are looking for. Send a typewritten or ink description, with sketch, of your favorite short-wave kink to the "Kink" Editor, SHORT WAVE CRAFT. necting both aerials to the set at one time. I obtained excellent results—a gain in signal strength and also better rekeneration.—Allen D. Rickert, Jr. ## PLUG-IN XMITTER COIL Here is a sketch and description of a plug-in grid coil for transmitters of the push-pull and single-control type. Pro-cure a machine screw large enough to fit the phone tips and solder within. Fit these into each end of the grid coil and solder the loose ends of wire of the coil on to it, after fitting nuts into the machine screw. Then, as illustrated, these should fit into tip jacks. For push-pull an additional tip and tip Jack is needed at the point marked "X".—James L. Paul. \vee ## "MIKE" STAND "MIKE" STAND This "mike" stand may be made of scrap material that is usually found in any "workshop." The base of the stand pictured was taken from a "Crosley Musicone" speaker, but any sort of a base may be used. The arm supporting the cone was sawed off leaving a "stub" about one inch high. This was drilled with an 11/32 drill, and threaded for the 12" length of % pipe on which the ring is made of a 24" length of % clock spring. Brass will be better, if available. The ends should be lapped 1", clamped together firmly, and soldered. The rings for the microphone springs are made of No. 16 whre formed around a lead pencil. They should be attached to the large ring through small holes, drilled 5½" apart, soldered firmly on both sides, and smoothed down with a file. The overlapped portion is drilled with a %" hole and the ring attached to the standard with two hexagon nuts. The cord is brought out through a %" hole in the pipe near the base. After assembling the stand, give it a coat of shellae or varnish. Before this finish dries, brush on bronze powder, covering thoroughly. After this dries hard, cover with brown paint (enamel or oil paint of any kind) and wipe off immediately with a cloth saturated in turpentine. This will give an antique bronze finish.—W. E. Carson. ### ***** * * CUTTING DOWN A CONDENSER Although midget condensers are relatively inexpensive, many experimenters still prefer to "cut down" standard receiving condensers when building S-W receivers. After much experimenting with all manner of variable condensers, using the Doerle "rig," it was found that as much as 25 per cent increase in volume could be obtained by copying transmitter variable condenser design and spacing the plates, instead of cutting the rotor or stator plates to fit the capacity. The condenser to be altered should have washer spacers on both the stator and rotor mount- ings. Space the stator plates about 4," apart, by the simple procedure of putting in twice the number of washers between plates. The same should apply to the rotor plates. The number of plates needed with the new spacing may be readily determined by experiment or formula. This method has another advantage in that the original frame retains its balance, and that scraping plates may be more easily avoided.—Carroll Moon. ## CELLOPHANE CONDENSER CELLOPHANE CONDENSER Have you ever built a short-wave reelver and then have it not work? All because you did not have a midget condenser handy to tune the serial. Or perhaps in making a very compact model, there was no place to mount one, without making it a cumbersome job. Try this method, which I have used successfully and see how it works. Secure a place of Cellophane off a cigarette package or a cigar and wrap it around the bare wire on the end of the aerial lead-in and then insert it in the antenna binding post. You will find that this method will save you lots of
trouble, espe- eially in experimental hook-ups. Capacity can be varied by the amount of Celiophane wrapped on the wire and also by tightening or loosening of the antenna binding post screw.—R. E. Thayer. ### **V V V** ADAPTER PLUG Here is how 1 make my adapter plugs: 1 got an A.C. plug at the Nickel & Dime store, and, as the blades of the plugs have holes in them, I soldered a small nut on the inside of each blade and opposite the hole. Then, I drilled the tube-base for the bolts to go through the sides to the blades of the A.C. plus. The A.C. plug is slightly smaller than the tube-base, but if it is filed down close, this makes a very neat "adapter" plus.—Charles Cassell. V V V ## KEY FROM CLOTHES-PIN Here's one for you fellows who want an extra key to practice on or perhaps to take the place of a regular to the pocket-book gets a little futter. Secure a clothes-pin from your mother's clothes line; one of the clip variety with a spring. Mount the pin on a suitable base, put a button on top for the fingers to grip and insert a couple of screws for contacts; a very serviceable key results. This method can also be used for making push-buttons where appearances won't count against it.—it. E. Thayer. ## CHEAP SPRING CLIPS On small 4½ v. "C" batteries there are usually two Fahnestock clips. Take a small wood chisel and knock the red substance from around the clip. With a little patlence the clip can be removed. The clip will be bent as it was on the real battery. Put this bent part in a vise and elamp the vise together. With one or two elamping movements the clip will be straightened. Old, dead "C" batterles and 45 v. "B" batterles will be given to you by radio shops, etc. In the long run this saves money, especially if Fannestock clips are going to be used in a multi-stage transmitter. A drill will put a hole in the clip for fastening.—H. S. Hiarrison. ### **V V** USE OF VIBRATOR ARMS Vibrator arms from old Model T Ford colls make good mountings for "one-hole" mounted radio apparatus. This is useful in dealing with experimental radio apparatus. This also may be used for holding panels to subpanels, If the hole is too small a reamer will help.—H. S. Harrison. ## SHORT WAVE STATIONS OF THE WORLD **SECTION TWO** Section One of this list (in the April number) contained the short wave broadcasting, experimental and commercial stations. Section Two contains the police, airport and television stations. Section One will reappear in the June issue and will feature a revised "grand" list of broadcasting, compercial and experimental stations. mercial and experimental stations. Keep these lists; they are valuable! Section One of this list of the Short Wave Stations of the World appeared in the April, 1933, number, and contained extremely valuable data on 170 stations of the broadcasting, experimental and commercial classifications. Preserve all your copies carefully, as they will form a continuous, up-to-theminute station directory of unequalled accuracy and completeness. If you do not have the April issue on hand, you can obtain a copy directly from us. (Mailed on receipt of 25c.) This month we are running the American police radio alarm stations, both numerically according to frequency and wavelength, and alphabetically according to call letters. This ar- rangement permits a double check on your reception of these highly interesting and active stations. The list is corrected against daily reports received by us from the Federal Radio Commission. No operating hours are given, of course, as practically all police stations are maintained on a 24 hour basis. Airport and television stations are also included this month, as are the experimental and commercial stations that were crowded out of the April issue. Please write to us about any new stations, changes in schedules, or other important data that you learn through announcements over the air or correspondence with the stations themselves. A post card will be sufficient. **Around-the-Clock Listening Guide** Although short wave reception is notorious for its irregularity and seeming inconsistency (wherein lies its greatest appeal to the sporting listener), it is a good idea to follow a general schedule as far as wavelength in relation to the time of the day is concerned. The observance of a few simple rules will save the short wave fan a lot of otherwise wasted time. From daybreak to mid-afternoon, and partic- ularly during bright daylight, listen between 13 and 22 meters (21540 to 13000 kc.). To the east of the listener, from about noon to 10:00 p. m., the 20-35 meter will be found very productive. To the west of the listener this same band is best from about midnight until shortly after daybreak. After dark, results above 35 meters are usually much better than during daylight. These general rules hold good whether you live in the United States or in China. ## POLICE RADIO ALARM STATIONS By Frequency and Wavelength ## 2506 kc.-120 m. KGZE San Antonio, Tex. ## 2470 kc.-121.5 m. Cedar Rapids, Ia. KGOZ Davenport, Ia. Fort Wayne, Ind. Kokomo, Ind. Memphis, Tenn. KGPN WPDZ WPDT WPEC KGPI Omaha, Neb. Philadelphia, Pa. San Francisco, Cal. WPDP KGPD KGPM San Jose, Cal. KGPW WRDQ Salt Lake City, U. Toledo, Ohio Gary, Ind. ## 2458 kc.-122.0 m. WPDO WPDN WPDV WRDH WPDR WPDR WPDR WPEA Akron, Ohio Auburn, N. Y. Charlotte, N. C. Cleveland, Ohio Rochester, N. Y. Syracuse, N. Y. ### 2450 kc.-122.4 m. KGPO KGPZ KGZF Chanute, Kans. Coffeyville, Kans. 2442 kc.-122.8 m. KGPX WPDF WPDF WPEB WMDZ WPDL WPDL WPDE KGPP WPDH KGPP WPDH KGZH Klamath Falls, Ore. WPFC WPSC Muskegon, Mich. Reading, Pa. ## 2430 kc.-123.4 m. WPDI KGPP WPDM KGZD WPFD WPFF WPFF Highland Park, Ill. WPFF Toms River, N. J. Hackensack, N. J. ### 2422 kc.-123.8 m. KSW WMJ Buffalo, N. Y. KGPE KGPG WPEK Berkeley, Cal. Buffalo, N. Y. Kansas City, Mo. Vallejo, Cal. New Orleans, La. WPDW Washington, D. C. Jacksonville, Fla. ## 2416 kc.-124.1 m. KGPB Minneapolis, Minn. WPDS St. Paul, Minn. ### 2414 kc.-124.2 m. WPDY Atlanta, Ga. KGPS Bakersfield, Cal. Belle Island, Mich. WCK WPDX Detroit, Mich. WRDR Grosse Pt. Vil. Mich. WMO Highland Pk., Mich. KGPA Seattle, Wash. KGPA WPDA Tulare, Cal. El Paso, Tex. KGZM WPFH Baltimore, Md. Tacoma, Wash. Columbus, Ga. Birmingham, Ala. ## 1712 kc.-175.15 m. KGPJ WPDB WPDC WPDD WKDU KVP Beaumont, Tex. Chicago, Ill. ## 1574 kc.-189.5 m. WRDS WMP Fram'gham, Mass. WPEW KGPY KGPY KGPY KRDS F. Lansing, Mich. Fram'gham, Mass. North'pton, Mass. Shreveport, La. 1534 kc.-196.1 m. KGHO Des Moines, Ia. 1430 kc.-209.8 m. Harrisburg, Pa. 0.00 ## 257 kc.-1123 m. WBR WJL WBA WMB WDX Butler, Pa. Greensburg, Pa. Harrisburg, Pa. W. Reading, Pa. Wyoming, Pa. ## RADIO ALARM STATIONS POLICE Alphabetically By Call Letters | KGHO | Des Moines, Iowa | 1534 kc. | KGZI | Wichita Falls, Tex. | 1712 kc. | WPEK | New Orleans, La. | 2422 kc. | |------|----------------------|----------|------|---------------------|----------|------|-------------------------|----------| | KGJX | Pasadena, Cal. | 1712 kc. | KGZM | El Paso, Tex. | 2414 kc. | WPEP | Arlington, Mass. | 1712 kc. | | KGOZ | Cedar Rapids, Iowa | 2470 kc. | KVP | Dallas, Tex. | 1712 kc. | WPFC | Muskegon, Mich. | 2442 kc. | | | | 2414 kc. | KSW | Berkeley, Cal. | 2422 kc. | WPFD | Highland Park, Ill. | 2430 kc. | | KGPA | Seattle, Wash. | 2416 kc. | WBA | Harrisburg, Pa. | 257 kc. | WPFF | Toms River, N. J. | 2430 kc. | | KGPB | Minneapolis, Minn. | | | | 257 kc. | WPFH | Baltimore, Md. | 2414 kc. | | KGPC | St. Louis, Mo. | 1712 kc. | WBR | Butler, Pa. | 2414 kc. | WJL | Greensburg, Pa. | 257 kc. | | KGPD | San Francisco, Cal. | 2470 kc. | WCK | Belle Island, Mich. | | WKDU | Cincinnati, Ohio | 1712 kc. | | KGPE | Kansas City, Mo. | 2422 kc. | WDX | Wyoming, Pa. | 257 kc. | | W. Reading, Pa. | 257 kc. | | KGPG | Vallejo, Cal. | 2422 kc. | WPDA | Tulare, Cal. | 2414 kc. | WMB | | 2442 kc. | | KGPH | Oklahoma City, Okla. | 2450 kc. | WPDB | Chicago, Ill. | 1712 kc. | | Indianapolis, Ind. | 2422 kc. | | KGPI | Omaha, Neb. | 2470 kc. | WPDC | Chicago, Ill. | 1712 kc. | WMJ | Buffalo, N. Y. | | | KGPJ | Beaumont, Tex. | 1712 kc. | WPDD | Chicago, Ill. | 1712 kc. | WMO | Highland Park, Mich. | 2414 kc. | | KGPL | Los Angeles, Cal. | 1712 kc. | WPDE | Louisville, Ky. | 2442 kc. | WMP | Framingham, Mass. | 1574 kc. | | KGPM | San Jose, Cal. | 2470 kc. | WPDF | Flint, Mich. | 2442 kc. | WPDK | Milwaukee, Wis. | 2450 kc. | | KGPN | Davenport, Iowa | 2470 kc. | WPDH | Richmond, Ind. | 2442 kc. | WPDL | Lansing, Mich. | 2442 kc. | | KGPO | Tulsa, Okla. | 2450 kc. | WPDI | Columbus, Ohio | 2430 kc. | WPDM | | 2430 kc. | | KGPP | Portland, Ore. | 2442 kc. | WPDS | St. Paul, Minn. | 2416 kc. | WPDN | Auburn, N. Y. | 2458 kc. | | KGPS | Bakersfield, Cal. | 2414 kc. | WPDW | Washington, D. C. | 2422 kc. | WPDO | Akron, Ohio | 2458 kc. | | KGPW | Salt Lake City, Utah | 2470 kc. | WPDX | Detroit, Mich. | 2414 kc. | WPDP | Philadelphia, Pa. | 2470 kc. | | KGPX | Denver, Colo. | 2442 kc. | WPDY | Atlanta, Ga. | 2414 kc. | WPDR | Rochester, N. Y. | 2458 kc. | | KGPY | Shreveport, La. | 1574 kc. | WPEA | Syracuse, N. Y. | 2458 kc. | WPDT | Kokomo, Ind. | 2470 kc. | | | | 2450 kc. | WPEB | Grand Rapids, Mich. | 2442 kc. | WPDU | Pittsburgh, Pa. | 1712 kc. | | KGPZ | Wichita, Kans. | | WPEC | Memphis, Tenn. | 2470 kc. | WPDV | Charlotte, N. C. | 2458 kc. | | KGZB | Houston, Tex. | 1712 kc. | WPEE | New York, N. Y | 2450 kc. | WPDZ | Fort Wayne, Ind. | 2470 kc. | | KGZD | San Diego, Cal. | 2430 kc. | | New York, N. Y. | 2450 kc. | | Cleveland, Ohio | 2458 kc. | | KGZE | San Antonio, Tex | 2506 kc. | WPEF | | 2450 kc. | WRDR | Grosse Pt. Village, Mic | | | KGZF | Chanute, Kans. | 2450 kc. | WREG | New York, N. Y. | 1712 kc. | WRDO | Toledo, Ohio | 2470 kc. | | KGZH | Klamath Falls, Ore. | 2442 kc. | WPEH | Somerville, Mass. | 1712 KC. | WADQ | Toledo, Ollio | 2113 MC. | | | | | | A-1 | | | | | ## AIRPORT RADIO STATIONS The airport stations do not follow any fixed schedules, and are
likely to be heard anytime of the day or night. They operate very "snappily," and engage only in quick, brief conversations with pilots aloft. The airplane transmitters are usually heard on the same wavelengths. The stations are listed alphabetically according to cities within ten groups of wavelength ranges. The stations in each group are likely to be heard on any of the waves listed. ## Group One 94.86 m.-3160 kc. 53.83 m.-5570 kc. 94.56 m.-3170 kc. 53.74 m.-5580 kc. 93.29 m.-3215 kc. 53.64 m.-5590 kc. 52.98 m.-5660 kc. Bakersfield, Calif. Bellefonte, Pa. KQK WNAM Boise, Idaho Brooksville, Pa. Burbank, Calif. KRA WNAL KEU KOE Cheyenne, Wyo. Chicago, Ill. Cleveland, Ohio Dallas, Tex. Des Moines, Iowa WUCG WNAK KNAT KQM Des Moines, Iowa Elko, Nevada Fort Worth, Tex. Fresno, Calif. Iowa City, Iowa Kansas City, Mo. Lincoln, Neb. Medford, Ore. KKO KGUC KGT KQQ KNAS KRF KGE WNAU Moline, Ill. Newark, N. J. North Platte, Nebr. WNAO North Platte, Nebr. Oakland, Calif. Okla. City, Okla. Omaha, Nebr. Orlando Twsp., Ill. Pasco, Wash. Ponca City, Okla. Portland, Ore. Redding, Calif. Rock Springs, Wyo. Sacramento, Calif. Salt Lake City, Utah San Diego, Calif. Seattle, Wash. Spokane, Wash. Tulsa, Okla. Wichita, Kans. KMR KFO KNAV KMP WNAT KGUZ ## Group Two Wichita, Kans. KGQZ KGTZ KGTE 103.23 m.-2905 kc. 60.15 m.-4990 kc. 97.63 m.-3070 kc. 54.45 m.-5510 kc. 97.15 m.-3090 kc. 52.88 m.-5680 kc. | 60.39 m4970 kc. 52.7
52.45 | m5690 kc.
m5720 kc. | |-------------------------------|------------------------| | Alameda, Calif. | KGSB | | Albuquerque, N. M. | KSX | | Burbank, Calif. | KSI | | Butte, Mont. | KBTY | | | WAEE | | Camden, N. J. | | | Columbus, Ohio | WHG | | Cresson, Pa. | WAEG | | Harrisburg, Pa. | WAED | | Indianapolis, Ind. | WHM | | Kansas City, Mo. | KST | | Kingman, Ariz. | KGTL | | Las Vegas, Nev. | KGTN | | Newark, N. J. | WAEF | | | WAEC | | Pittsburgh, Pa. | KGTX | | Pocatello, Idaho | | | Robertson, Mo. | KGTR | | Springfield, Mo. | KGTQ | | Tulsa, Okla. | KSY | | Wichita, Kans. | KGTD | | Winslow, Ariz. | KGTA | | | | ## **Group Three** 103.23 m.-2905 kc. 60.15 m.-4990 kc. 97.63 m.-3075 kc. 54.45 m.-5510 kc. 97.15 m.-3090 kc. 53.83 m.-5570 kc. 94.86 m.-3160 kc. 53.74 m.-5580 kc. 94.56 m.-3170 kc. 53.64 m.-5590 kc. 94.26 m.-3180 kc. 52.98 m.-5660 kc. 93.29 m.-3215 kc. 52.88 m.-5670 kc. 60.39 m.-4970 kc. 52.7 m.-5690 kc Denver, Colo. KGSP Las Vegas, Nev. Pueblo, Colo. KGTJ KGSR Salt Lake City, Utah KGTH ## Group Four 93.09 m.-3220 kc. 86.52 m.-3470 kc. 92.8 m.-3230 kc. 86.08 m.-3490 kc. 92.52 m.-3240 kc. 61.00 m.-4920 kc. 92.09 m.-3250 kc. 53.55 m.-5600 kc. 86.77 m.-3460 kc. 53.26 m.-5630 kc. Abilene, Tex. KGUL Beaumont, Tex. **KGTV** Birmingham, Ala. Boston, Mass. Mobile, Ala. WSDE WSDD Newark, N. J. Tuscon, Ariz. WSDC KGUO ## **Group Five** 129.63 m.-2315 kc. 86.08 m.-3490 kc. 127.33 m.-2355 kc. 63.29 m.-4740 kc. 93.09 m.-3220 kc. 61.00 m.-4920 kc. 92.82 m.-3230 kc. 53.45 m.-5600 kc. 92.52 m.-3260 kc. 53.45 m.-5630 kc. 87.02 m.-3450 kc. 45.87 m.-6540 kc. 86.77 m.-3460 kc. 45.8 m.-6550 kc. 86.52 m.-3470 kc. 37.43 m.-8015 kc. **WSDM** Albany, N. Y. Atlanta, Ga. Bera, Ohio Big Spring, Tex. Brownsville, Tex. WQPD WSDQ KGUG KGUE KGUR Burbank, Calif. Chicago, Ill. WSDG Cincinnati, Ohio Columbus, Ohio WSID WSDP Dallas, Tex. Douglas, Ariz. El Paso, Tex. KGUF KGUN El Paso, Tex Frijole, Tex. KGUA KGUM WSDZ Indianapolis, Ind. KGUQ Indio, Calif. KSDB Jackson, Miss. Little Rock, Ark. Louisville, Ky. Memphis, Tenn. Nashville, Tenn. KQUU WSDF WSDK WSDT WQDQ New Orleans, La. KGTS KGUP Omaha, Nebr. Phoenix, Ariz. KGUT Robertson, Mo. San Antonio, Tex. Shreveport, La. Springfield, Ill. Waco, Tex. KGUD KGUK WAEJ KGUH ## Group Six 112.44 m.-2670 kc. 98.83 m.-3040 kc. 112.27 m.-2675 kc. 55.79 m.-5380 kc. 105.11 m.-2850 kc. Chicago, Ill. WSDS Duluth, Minn. Fargo, N. D. Madison, Wis. KNWB WSDR Milwaukee, Wis. Pembia, N. D. St. Paul, Minn. WAEH KNWC KNWA ## Group Seven 111.19 m.-2680 kc. 51.5 m.-5820 kc. 102.1 m.-2935 kc. WAEI Detroit, Mich. ## Group Eight 129.63 m.-2310 kc. 45.87 m.-6540 kc. 127.33 m.-2355 kc. 45.8 m.-6550 kc. 86.52 m.-3470 kc. 45.73 m.-6560 kc. 63.29 m.-4740 kc. 37.45 m.-8010 kc. Blythe, Calif. Buffalo, N. Y. Houston, Tex. KGUS WSDO KGUB ## **Group Nine** 126.1 m.-2380 kc. 63.22 m.-4740 kc. 101.83 m.-2950 kc. 53.07 m.-5650 kc. 100.46 m.-2990 kc. 45.52 m.-6590 kc. 72.11 m.-4160 kc. 45.45 m.-6600 kc. Atlantic City, N. J. WEEQ Baltimore, Md. WEEB Charleston, S. Car. Greensboro, N. Car. WEEC WEEG WEEJ Jacksonville, Fla. WEEN Linden, N. J. WEEH McRae, Ga. Miami, Fla. WEEM WEEO Orlando, Fla. Richmond, Va. Spartanburg, S. Car. WEEF ## Group Ten 113.29 m.-2650 kc. 45.59 m.-6580 kc. 104.53 m.-2870 kc. 37.43 m.-8010 kc. 97.32 m.-3980 kc. 36.5 m.-8220 kc. 55.5 m.-5400 kc. 24.33 m.-12,330 kc. 53.64 m.-5700 kc. 18.47 m.-16,240 kc 45.66 m.-6570 kc. 18.24 m.-16,450 kc KGJW Brownsville, Tex. Miami, Fla. WKDL San Juan, P. R. WMDV WAEK ## AIRPORT RADIO STATIONS Alphabetically by Call Letters The number in parenthesis following the location indicates the frequency group in which the station operates. See preceding page for these figures. | KBTY | Butte, Mont. (2) | KGUB | Houston, Tex. (8) | KNWC | Pembina, N. D. (6) | WMDV | San Juan, P. R. (10) | |------|------------------------|------|-----------------------|------|------------------------|------|------------------------| | KEU | Burbank, Calif. (1) | KGUD | San Antonio, Tex. (5) | KOE | Chevenne, Wyo. (1) | WNAO | Newark, N. J. (1) | | KFM | Sacramento, Calif. (1) | | Brownsville, Tex.(5) | WAEC | Pittsburgh, Pa. (2) | WNAK | Cleveland, Ohio (1) | | KFO | Oakland, Calif. (1) | KGUF | Dallas, Tex. (5) | WAED | Harrisburg, Pa. (2) | WNAL | Brookville, Pa. (1) | | KGE | Medford, Ore. (1) | KGUG | Big Spring, Tex. (5) | WAEE | Camden, N. J. (2) | WNAM | Bellefont, Pa. (1) | | | C Ft. Worth, Tex. (1) | KGUH | Waco, Tex. (5) | WAEF | Newark, N. J. (2) | WNAT | Orlando Twishp., | | KGJW | Brownsville, Tex. (10) | KGUK | Shreveport, La. (5) | WAEG | Cresson, Pa. (2) | | Ill. (1) | | KGQZ | San Diego, Calif. | KGUL | Abilene, Tex. (4) | WAEH | Milwaukee, Wis. (6) | WNAU | Moline, Ill. (1) | | KGSB | Alameda, Calif, (2) | KGUM | Frijole, Tex. (5) | WAEI | Detroit, Mich. (7) | WQDQ | New Orleans, La. (5) | | KGSP | Denver, Colo. (3) | KGUN | Douglas, Ariz. (5) | WAEJ | Springfield, Ill. (5) | WQPD | Atlanta, Ga. (5) | | KGSR | Pueblo, Colo. (3) | KGUO | Tuscon, Ariz. (4) | WAEK | Mobile, Ala. (4) | WSDC | Newark, N. J. (4) | | KGT | Fresno, Calif, (1) | KGUP | Phoenix, Ariz. (5) | WEEB | Baltimore, Md. (9) | WSDD | Boston, Mass. (4) | | KGTA | Winslow, Ariz. (2) | KGUQ | Indio, Calif. (5) | WEEC | Charleston, S. C. (9) | WSDE | Birmingham, Ala. (4) | | KGTD | Wichita, Kans. (2) | KGUR | Burbank, Calif. (5) | WEEF | Spartanburg, S.C.(9) | WSPF | Louisville, Kv. (5) | | KGTE | Wichita, Kans. (1) | KGUS | Blythe, Calif. (8) | WEEG | Greensboro, N.C.(9) | WSDG | Chicago, Ill. (5) | | KGTH | Salt Lake City, U.(3) | | Robertson, Mo. (5) | WEEH | McRae. Ga. (9) | WSDK | Memphis, Tenn. (5) | | KGTJ | Las Vegas, Nev. (3) | KGUZ | Ponca City, Okla.(1) | WEEJ | Jacksonville, Fla. (9) | WSDL | Duluth, Minn. (6) | | KGTL | Kingman, Ariz. (2) | KKO | Elko, Neva. (1) | WEEM | Miami, Fla. (9) | WSDM | Albany, N. Y. (5) | | KGTN | Las Vegas, Nev. (2) | KMP | Omaha, Neb. (1) | WEEN | Linden, N. J. (9) | WSDO | Buffalo, N. Y. (8) | | KGTQ | | KMR | No. Platte, Nebr. (1) | WEEO | Orlando, Fla. (9) | WSDP | Columbus, Ohio (5) | | KGTR | Robertson, Mo. (2) | KNAS | Kansas City, Mo.(1) | WEEQ | Atlantic City, N. J. | WSDQ | Berea, Ohio (5) | | KGTS | Omaha, Neb. (5) | KNAT | Dallas, Tex. (1) | | (9) | WSDS | Chicago, Ill. (6) | | KGTV | | KNAU | Tulsa, Okla. (1) | WEER | Richmond, Va. (9) | WSDT | Nashville, Tenn. (5) | | KGTX | | KNAV | Okla. City, Okla. (1) | WHG | Columbus, Ohio (2) | WSDZ | Indianapolis, Ind. (5) | | KGTZ | Spokane, Wash. (1) | KNWA | St. Paul. Minn. (6) | WHM | Indianapolis, Ind. (2) | WSID | Cincinnati, Ohio (5) | | KGUA | El Paso, Tex. (5) | KNWB | Fargo, N. D. (6) | WKDL | Miami, Fla. (10) | WUCG | Chicago, Ill. (1) | ## TELEVISION STATIONS Television transmission at the present time is highly experimental in nature, and for this reason it is difficult to give operating hours, scanning speeds, lines per second, etc., with any degree of accuracy. ## According to frequency and wavelength 1600-1700 kc. 176.5-187.5 m. W2XR—Radio Pictures, Inc. Long Island City, N. Y. 500 watts. 60 lines W1XAV—Short Wave & Television Co. Boston, Mass. 1000 watts. 60 lines 200-2100 kc. 142.9-150 m. W3XK—Jenkins Laboratories Wheaton, Md. 5000 watts. 60 lines W9XAO—Western Television Corp. Chicago, Ill. 500 watts. 45 lines W6XAH—Pioneer Mercantile Co. Bakersfield, Cal. 1000 watts. 60 lines W9XK—Iowa State University Iowa City, Iowa 100 watts. 60 lines W8XAM—Sparks-Withington, Inc. Jackson, Mich. 1000 watts 2100-2200 kc. 136.4-142.9 m. W3XAK—National Broadcasting Co. Portable W2XBS—National Broadcasting Co. New York, N. Y. 5000 watts W3XAD—RCA-Victor Co. Camden, N. J. 500 watts W8XAN—Sparks-Withington, Inc. Jackson, Miss. 1000 watts. W2XCW—General Electric Co. Schenectady, N. Y. 20,000 watts W8XAV—Westinghouse Electric & Mfg. Co. East Pittsburgh, Pa. 20,000 watts W6XS—Don Lee Broadcasting Corp. Gardena, Calif. 500 watts W9XAB—National Broadeasting Co. Chicago, Ill. 2,500 watts W9XO Kansas State Agriculture College Manhattan, Kans. 2200-2300 kc. 130.4-1364 m. W9XAL—First National Television Corp. Kansas City, Mo. 2750-2850 kc. 105.3-109.1 m. W9XG—Purdue University W. Lafayette, Ind. 1500 watts. 60 lines W3XE—Philadelphia Storage Battery Co. Philadelphia, Pa. 1500 watts. 120 lines W9XAA—Chicago Federation of Labor Chicago, Ill. 500 watts. 60 lines 43,000-46,000 kc. 6.52-6.98 m. 48,500-50,300 kc. 6.00-6.20 m. 60,000-80,000 kc. 3.75-5.00 m. W9XD—The Journal Co. Milwaukee, Wis. 500 watts W3XAD—RCA-Victor Co., Camden, N. J. 2000 watts W2XBT—National Broadcasting Co. Portable 750 watts W1XG—Short Wave &
Television Co. Boston, Mass. 30 watts W2XR—Radio Pictures, Inc. Long Island City, N. Y. Long Island City, N. Y. 1000 watts W2XF—National Broad- W2XF—National Broad casting Co. New York, N. Y 5000 watts W6XAO—Don Lee Broadcasting System Los Angeles, Calif. 150 watts W3XE—Philadelphia Storage Battery Co. Philadelphia, Pa. 1500 watts ## Alphabetically by Call WIXAV Boston, Mass. WIXG Boston, Mass. W2XBS New York, N. Y. W2XBT Portable W2XCW Schenectady, N. Y. W2XF New York, N. Y. W2XR Long Island City, N. Y. W3XAD Camden, N. J. W3XAK Portable W3XE Philadelphia, Pa. W3XK Wheaton, Md. W6XAH Bakersfield, Calif. W6XAO Los Angeles, Calif. W6XS Gardena, Calif. W6XS Gardena, Calif. W8XAM Jackson, Mich. W8XAN Jackson, Mich. W8XAV Pittsburgh, Pa. W9XAA Chicago, Ill. W9XAB Chicago, Ill. W9XAO Chicago, Ill. W9XD Milwaukee, Wis. W9XG W. Lafayette, Ind. W9XK Iowa City, Iowa W9XO Manhattan, Kans. ## EXPERIMENTAL AND COMMERCIAL STATIONS Continued from April issue. 15950 kc. PLG BANDOENG, JAVA Afternoons. 15860 kc. FTK 18.90 meters ST. ASSISE, FRANCE Telephony 15760 kc. JIAA 18.93 meters TOKIO, JAPAN Up to 10 a. m. Beam transmitter. 15300 kc. OXY 19.60 meters Lyngby, Denmark, Experimental 14530 kc. LSA 20.65 meters BUENOS AIRES, ARGENTINA BUENOS AIRES, ARGENTINA 14480 kc. GGBW RADIO SECTION General Post Office, London E. C. 1. Rugby, England 14480 kc. WNC 20.70 meters DEAL, N. J. 14420 kc. VPD 20.80 meters SUVA, FIJI ISLANDS 14150 kc. KKZ 21.17 meters BOLINAS, CALIF. 13400 kc. WND 22.38 meters DEAL BEACH, N. J. Transatlantic telephony 12780 kc. GBC 23.46 meters RUGBY, ENGLAND <mark>12290 kc. GBU</mark> 24.41 meters RUGBY, ENGLAND 12250 kc. FTN 24.46 meters STE. ASSISE (PARIS), FRANCE Works Buenos Aires, Indo-China and Java. On 9 a. m. to 1 p. m. and other hours 12250 kc. GBS 24.46 meters RUGBY, ENGLAND 12250 kc. PLM 24.46 meters BANDOENG, JAVA 7.45 a. m. 12150 kc. GBS 24.68 meters RUGBY, ENGLAND Transatlantic phone to Deal, N. J. (New York) 12150 kc. FQO,FQE 24.68 meters STE. ASSISE, FRANCE 12045 kc. NAA 24.89 meters ARLINGTON, VA. Time signals, 11:57 to noon. 12045 kc. NSS 24.89 meters ANNAPOLIS, MD. Time signals, 9:57-10 p. m. 12000 kc. FZG 24.98 meters SAIGON, INDO-CHINA Time signals, 2-2:05 p. m. 11945 kc. KKQ 25.10 meters BOLINAS, CALIF. 11690 kc. YVQ 25.65 meters MARACAY, VENEZUELA (Also broadcasts occasionally) 11670 kc. KIO 25.68 meters KAHUHU, HAWAII 11530 kc. CGA 26.00 meters DRUMMONDVILLE, CANADA 11490 kc. GBK 26.10 meters BODMIN, ENGLAND 11470 kc. IBDK 26.15 meters S.S. "ELETTRA" Marconi's yacht 11435 kc. DHC 26.22 meters NAUEN, GERMANY 11340 kc. DAN 26.44 meters NORDEICH, GERMANY Time signals, 7 a, m., 7 p. m. Deutsche Seewarte, Hamburg 10980 kc. ZLW 27.30 meters WELLINGTON, N. Z. Tests 3-8 a. m. 10630 kc. PLR 28.20 meters 8ANDOENG, JAVA Works with Holland and France weekdays from 7 a. m.; sometimes after 9:30° 10540 kc. WLO 28.44 meters LAWRENCE, N. J. 10540 kc. VLK 28.44 meters SYDNEY, AUSTRALIA 1-7 a. m. 10410 kc. PDK 28.80 meters* KOOTWIJK, HOLLAND 10410 kc. KEZ 28.80 meters BOLINAS, CALIF. 10410 kc. LSY 28.80 meters BUENOS AIRES, ARGENTINA 10390 kc. GBX 28.86 meters RUGBY, ENGLAND 10150 kc. DIS 29.54 meters NAUEN, GERMANY Press (code) daily; 6 p. m., Spanish; 7 p. m., English; 7:50 p. m., German; 2:30 p. m., English; 5 p. m., German. Sundays: 6 p. m., Spanish; 7:50 p. m., German; 9:30 p. m., Spanish 9950 kc. GBU 30.15 meters RUGBY, ENGLAND 9890 kc. LSN 30.30 meters BUENOS AIRES Phone to Europe 9890 kc. LSA 30.30 meters BUENOS AIRES 9790 kc. GBW 30.64 meters RUGBY, ENGLAND 9750 kc. 30.75 meters AGEN, FRANCE Tues. and Fri., 3 to 4:15 p. m. 9750 kc. WNC 30.75 meters DEAL, N. J. 9700 kc. WMI 30.90 meters DEAL, N. J. 9600 kc. 30.93 meters BUENOS AIRES LQA 9600 kc. LGN 31.23 meters BERGEN, NORWAY 9330 kc. CGA 32.13 meters DRUMMONDVILLE, CANADA 9310 kc. kc. GBC RUGBY, ENGLAND Sundays, 2:30-5 p. m. 9250 kc. GBK 32.40 meters BODMIN, ENGLAND 02201 9230 kc. FL 32.50 meters PARIS, FRANCE (Eiffel Tower). Time signals 4:56 a. m. and 4:56 p. m. 9200 kc. DO kc. GBS 32.59 meters RUGBY, ENGLAND Transatlantic phone 9010 kc. 33.26 meters RUGBY, ENGLAND GBS 8872 kc. NPO 33.81 meters CAVITE (MANILA) Philippine Islands Time signals 9:55-10 p. m. 8872 kc. NAA 33.81 meters ARLINGTON, VA. Time signals 9:57-10 p. m., 2:57-3 p. m. 8810 kc. WSBN 33.98 meters S.S. "LEVIATHAN" www.americanradiohistory.com ## **EXPERIMENTAL AND COMMERCIAL STATIONS** 8690 kc. W2XAC 34.50 meters SCHENECTADY, NEW YORK 8650 kc. W2XCU 34.68 meters AMPERE, N. J. 8650 kc. W3XE 34.68 meters BALTIMORE; MD. 12:15-1:15 p. m., 10:15-11:15 p. m. 8650 kc. W2XV 34.68 meters RADIO ENGINEERING LAB. Long Island City, N. Y. 8650 kc. W8XAG 34.68 meters DAYTON, OHIO 8650 kc. W4XG > 34.68 meters MIAMI, FLA. 8650 kc. W3XX 34.68 meters WASHINGTON, D. C. And other experimental stations 8630 kc. WOO > 34.74 meters DEAL, N. J. 8630 kc. W2XDO 34.74 meters OCEAN GATE, N. J. 8550 kc. WOO > 35.02 meters OCEAN GATE, N. J. PRAG 8450 kc. > 35.50 meters PORTO ALEGRE, BRAZIL 8:30-9:00 a. m. 8120 kc. PLW 36.92 meters BANDOENG, JAYA 8100 kc. EATH 37.02 meters VIENNA, AUSTRIA Mon. and Thurs., 5:30 to 7 p. m. 8100 kc. JIAA 37.02 meters TOKYO, JAPAN Tests 5-8 a. m. 7930 kc. DOA 37.80 meters DOEBERITZ, GERMANY I to 3 p. m. Reichpostzentralamt, Berlin 7890 kc. 38.00 meters SUVA, FIJI ISLANDS 7890 kc. JIAA > 38.00 meters TOKIO, JAPAN (Testing) 7830 kc. PDV 38.30 meters KOOTWIJK, HOLLAND After 9 a. m. 7770 kc. FTF FTL HKF 38.60 meters STE. ASSISE, FRANCE 7770 kc. PCK 38.60 meters KOOTWIJK, HOLLAND 9 a. m. to 7 p. m. 7660 kc. 39.15 meters STE. ASSISE, FRANCE 7610 kc. 39.40 meters BOGOTA, COLOMBIA 8-10 p. m. 7520 kc. 39.74 meters CALGARY, CANADA Testing, Tues., Thurs. 6860 kc. 43.70 meters BOLINAS, CALIF. 6860 kc Radio 43.70 meters Vitus PARIS, FRANCE 4-11 a. m. 3 p. m. 6840 kc. CFA 43.80 meters DRUMMONDVILLE, CANADA 6753 kc. 44.40 meters DEAL, N. J. 6660 kc. F8KR 44.99 meters CONSTANTINE, ALGERIA Mon., Fri., 5 p. m. 6660 kc. 44.99 meters BOGOTA, COLOMBIA 6560 kc. RFN 45.50 meters MOSCOW, U. S. S. R. (Russia) 2 a. m.-4 p. m. 6515 kc. WOO 46.05 meters DEAL, N. J. 4770 kc. ZL2XX 62 80 meters WELLINGTON, NEW ZEALAND 4760 kc. Radio LL 63.00 meters PARIS, FRANCE 4750 kc. WOO > 63.13 meters OCEAN GATE, N. J. 4700 kc. WIXAB > 63.79 meters PORTLAND, ME. 4116 kc. WOO > 72.87 meters DEAL, N. J. 4105 kc. NAA 74.72 meters ARLINGTON, VA. Time signals, 9:57-10 p. m., 11:57 3256 kc. W9XL 92.50 meters CHICAGO, ILL. 3156 kc. PK2AG > 95.00 meters SAMARANG, JAVA WOO 3124 kc. 96.03 meters DEAL, N. J. 3076 kc. 97.53 meters CHICAGO, ILL. 3076 kc. 97.53 meters MOTALA, SWEDEN II:30 a. m.-noon, 4-10 p. m. 1560 kc. WIXAU 199.35 meters BOSTON, MASS. 1550 kc. **W2XCE** > 193.5 meters PASSAIC, N. J. ## A Word of Explanation About S. W. Schedules This list is compiled from many sources, all of which are not in agreement. In fact, conflicting data are received sometimes from the stations themselves. We are constantly writing to stations all over the world and reading reports from hundreds of correspondents. We invite individual listeners to inform us of any stations not listed herewith, or operating on frequencies of hours different from those indicated. All times given are Eastern Standard. Listeners living in zones operating on daylight saving time must make their own corrections. Special note: please do not ask us to identify unknown stations from snatches of voice or music. This is utterly impossible. Make a notation of the dial setting and try for the station again until you get an understandable announcement. This list will appear with last minute corrections in the June issue. ## SHORT WAVE LEAGUE ## HONORARY MEMBERS Dr. Lee de Forest John L. Reinartz D. E. Replogle Hollis Baird E. T. Somerset Baron Manfred von Ardenne Hugo Gernsback Executive Secretary ## Special S-W Programs for "League" Members As one of the first steps in our campaign to make the Short Wave League a truly international organization, we are now busily engaged in arranging with various foreign short-wave broadcasting stations for special test programs for the benefit of League members. While the number of foreign stations that transmit during periods convenient to American listeners has increased during the past year, many "fans" complain that some of the better stations are still operating on limited schedules that preclude any possibility of successful reception during early evening or even late afternoon hours. Although we don't expect every stations are anxious to co-operate with short-wave listeners because of the value of the latters' reports. Dat ol' debbil "time difference" is what makes things so difficult. In spite of all our efforts to educate League members to the essential facts of time practices, many of them want distant stations handed to them on a gold platter, so as to speak. They complain that they have to get up too early for some of the choice prizes like VK2ME (Sydney, Australia), or let supper get cold while they "fish" for EAQ (Madrid, Spain). They seem to forget that when it is seven p.m. Eastern Standard Time it is already midnight in Madrid and London, and most self-respecting radio announcers and station engineers are yawnnouncers and station engineers are yawn- ingly preparing for bed, if they aren't already there. We are trying to arrange for a number of transmission periods. The first is set tentatively for 7:00 to 8:30 or perhaps 9:00 a.m. E.S.T., the wavelengths to be in the neighborhood of 20 meters or lower. This will give most people a chance to do some serious "daylight listening," either before or after breakfast, or even during breakfast! This morning session should prove very productive, as many noise-making machines are not yet in operation, the air is quiet, and, more important, the listener is fully rested from a night's sleep and is not likely to be as impatient as he is late at night. Then again, this period corresponds to early afternoon in Europe and Africa, when many stations are on the air anyway and they won't
mind making special announcements in English got that in English see that we'll are on the air anyway and they won't mind making special announcements in English—get that, in English, so that we'll understand them. We've all had the aggravating experience of holding short-wave signals loud and clear for hours, without once hearing announcements in other than a strange foreign language. If we do nothing else, we think we will have accomplished something if we can get foreign announcers to give their call letters in English, however horrible the accent is. The second suggested period is around noon E.S.T., corresponding to late afternoon in Europe. While people who go to school or to work may not be able to take advantage of this session, many night workers, who sleep during the morning, will find it very convenient. The third and last period, which will undoubtedly be the most popular, will take in our own evening hours. The British Empire stations at Daventry have shown that early evening transmissions can be very successful, and perhaps we can inveigle some of the other stations into keeping an engineer awake at the transmitter, with plenty of black coffee, and phonograph records—and also a "self-pronouncing" English dictionary. At this early stage we are unable to-make any definite announcements of the special any definite announcements of the special programs. It takes time for letters to get across oceans, and we want to be darn sure of the arrangements before we say "Go!" to League members anxious to fill up their log books. Watch the next issue for further details further details. Several years ago PCJ, the famous short wave station of Philips Radio in Holland, rewarded listeners for their reception reports not only by sending them acknowledgement cards, but also by mentioning their names over the air! Outside of hearing an SOS or working your "first" station with an amount of the state th tion with an amateur transmitter, this is Thrill No. 1 for the short-wave listener. Maybe we can get Mr. Edward Startz, Philips Radio's multilingual announcer, to revive this most delightful practice. ## What Some of the Boys Think ## A "Hot" Code Argument Editor, SHORT WAVE CRAFT: Editor, SHORT WAVE CRAFT: I bought your December issue recently and soon turned to the SHORT WAVE LEAGUE page. I always make it a point to read the letters which are published there. However, I can not keep the lid on any longer after reading some of that batch of letters. Every one of the letters proposes to open some band of frequencies to practically unrestricted radio telephone operation. Code requirements are to be abolished in a part of the radio spectrum if these proposals are to be accepted. Only one letter, that from the Hollywood Chapter of the SHORT WAVE LEAGUE, makes any mention of the rigid technical examinations mention of the rigid technical examinations which would have to be instituted to take care of the situation. And these gentlemen are playing the game by having code classes and preparing to operate according to the regulations. Perhaps I should make my own position clear. I am a licensed operator, holding an amateur first-class license, and also a radio-telephone first-class license. I have held these licenses or their equivalent since ## Get Your Button! The illustration herewith shows the beautiful design of the "Official" Short Wave League button, which is available to everyone who becomes a member of the Short Wave League are explained in a booklet, copies of which will be mailed upon request. The button measures 3/4 inch in diameter and is inlaid in enamel—3 colors—red, white, and blue. Please note that you can order your button AT ONCE—SHORT WAVE LEAGUE supplies it at cost, the price, including the mailing, being 35 cents. A solid gold button is furnished for \$2.00 prepaid. Address all communications to SHORT WAVE LEAGUE, 96-98 Park Place, New York. 1930. I am a member of the American Radio Relay League, the organization which fights the battles for the amateur having any transmitting privileges today. Is it fair to the more than 30,000 licensed amateurs in this country to throw open a part of their hard won territory for the use of a class of people who are unwilling to spend a few minutes a day for a month or two to learn the code? Would they be any more willing to take the time and trouble to learn to operate their Would they be any more willing to take the time and trouble to learn to operate their stations legally and effectively? The amateur has to walk the "straight and narrow" path or he will lose all his rights. Learning the code and passing the prescribed examinations impresses upon him that he is being granted a valuable privilege, when he is granted the use of the air. air. Let us get together and keep the privileges we have by playing the game. Yours truly, ROGER WILSON, W6EGI, Box 245 Flagstaff, Ariz. (Continued on page 56) ## SHORT WAVE QUESTION BOX ## Edited by R. WILLIAM TANNER ### NOISE IN ONE-TUBE SUPER Fred Hoffman, Rutland, Vt., wants to know: know: (Q) How to eliminate rushing noises in a one-tube super-regenerative set which employs a 12A tube? (A) Such noises may sometimes be eliminated or reduced to a minimum by employing a variable grid leak and possibly a variable grid condenser. The feed-back or plate coil in the variation frequency circuits may also require an adjustment. If resistance control of regeneration in the short wave circuits is used, the plate voltage may be too high for the low frequency oscillator circuits. In any super-regenerator, it is preferable to apply constant plate (and screen grid with screen grid tube) voltage and control regeneration in some other way. (Q) Would an untuned screen grid R.F. stage increase volume enough to warrant (Q) Would an untuned screen grid R.F. stage increase volume enough to warrant its use? (A) No. (Q) On my 20 meter coil, the set works only on the low half of the dial. The grid coil has 5 turns (spaced) and the tickler has 3 turns wound close. Would it be OK to increase the tickler turns? (A) It will be necessary to change the turns to about 5 or 6 since, in a super-regenerative circuit the tickler must be somewhat larger than with the usual regenerator. ADDING T.R.F. STAGES Howard Hogan, Milwaukee, Wis. (Q) I am using a 24 T.R.F., a 24 regenerative detector and a 27 A.F. Would it be advisable to add two more T.R.F. stages for greater sensitivity? (A) Such an arrangement would be too (A) Such an arrangement would be too unstable even though all coils and tubes were shielded. (Q) Could a Stenode crystal be added a T.R.F. set to increase selectivity? (A) The Stenode can be applied only a superhet circuit. ### ELECTROSTATIC SHIELD IN TRANSFORMERS Stanley Grossmann, Grand Rapids, Mich. (Q) Why is an electro-static shield used in some makes of power transformers? (A) This shield is a copper strip placed between the primary and secondaries to prevent R.F. noises from motors, etc., reaching the set. (Q) I understand that the new 82 rectifier causes noise in the receiver. What rectifier causes noise in the receiver. What is the reason for this? (A) The noise is due to the normal arcing in the tube. The cure is generally a shield on the tube and a radio frequency chale in the positive lead preceding the choke in the positive lead preceding the How electrostatic shield is placed between windings on some power transformers; also use of R.F. choke in plate supply circuit. ## TELEVISION R.F. COIL DATA M. E. Hall, Des Moines, Iowa. (Q) How many turns would be needed a 1½" form for the television band? Questions, ordinary ones, will only be answered by mail when a fee of 25 cents accompanies them. Special queries involving considerable research will be quoted upon by the editor this department. An .0001 mf. tuning condenser will be (A) Approximately 40 turns of 26 D.C.C. wire "close wound." (Q) Could eastern television stations be picked up at this location? (A) With a suitable receiver you would probably be able to pick them up but the set would require considerable R.F. gain. ### 4 VERSUS 1 WIRE ANTENNAS Edwin Woodard, Baltimore, Md. (Q) Would a 4 wire antenna, 100 feet ng, be better for reception than a single (A) It is doubtful if any great differ- ence would be noted. (Q) What would be the simplest R.F. chokes to wind for 20-200 meters and also for 465 kc.? for 465 kc.? (A) Many radio dealers sell a winding form made with fibre ends 114" diameter. These are ideal. For short waves, 300 turns of 36 to 32 wire will be needed. For 465 kc 1,500 turns same size wire. (Q) Is it necessary to shield audio tubes in a 7 tube set? (A) If the first A.F. is a screen grid or pentode, shielding would probably be necessary to eliminate howling. ## VALUE OF BIAS RESISTOR James Murphy, Long Beach, Calif. (Q) What size bias resistor is needed for the triode of the 55 tube? (A) 2500 ohms, 2 watt. (Q) My short-wave superhet uses a 55 second detector, the triode of which is resistance-coupled to a 47 A.F. Volume is rather poor. Would another A.F. tube be needed to increase volume? rather poor. Would another A.F. tube be needed to increase volume? (A) You could save the extra tube by transformer coupling the 55 triode to the 47 A.F. grid. A 2 to 1 up to 4 to 1 ratio transformer would result in greater vol- ## EFFICACY OF TUBE BASES FOR COILS A. I. Petain, Fall River, Mass. (Q) Is the bakelite used in tube bases good enough for coils? (A) Some manufacturers use a high grade of material and others use a poor grade; therefore all tube bases will not be appeally grade. grade; therefore all tube bases will not be equally good. (Q) If I use large wire for coils will the losses be lower? (A) Large wire usually requires large forms and greater spacing of turns to keep distributed capacity to a minimum. Small wire on small forms is as efficient as large wire on large forms. as large wire on large forms, generally ## CAN'T TUNE BELOW 31 METERS CAN'T TUNE BELOW 31 METERS H. C.
Chesnut, 88 Bailey Avenue, Plattsburg, N. Y. (Q) No matter what coils I use I cannot tune below 31.3 meters; why? (A) We do not quite understand why you cannot tune in signals below 31.3 meters, especially when you use coils with a small number of turns, such as specified in the various articles of Short Wave Craft. The principal reason offhand would be that the variable tuning condenser that you are using across the grid coil in any case, has too high a minimum capacity. This is rather unusual today as most of the short-wave type midget condensers have a fairly low minimum capacity, i.e., the capacity of the variable condenser, when the rotary plates are turned entirely out of the stationary plates. One other cause of such a per- formance comes to mind; it might be possible that you are using too large an aerial. It has occurred that with a large aerial of possibly 150 feet or 250 feet of wire connected to the SW receiver, such a large antenna resonated at harmonics and fundamentals such that you might not be able to tune much lower than 31 meters. The remedy is to use a short antenna of about Here's the famous Doerle 2-Tube Receiver Circuit. ## THE DOERLE 2-TUBE RECEIVER H. W. Sinclair, Paterson, New Jersey. (Q) Having read so many glowing letters on your "fan mail" page each month, regarding the reception of world-wide signals on the Doerle 2-tube receiver, will you please repeat this circuit so that we can all have a look at it? (A) Here is the Doerle 2-tube receiver circuit. As you will see it represents nothing radical; the principal reason for its remarkable success logically lies in the use of the highest quality parts, good tubes, and a well-insulated aerial, which may comprise a single wire forty to sixty feet long. ### NECESSITY FOR R.F. CHOKES NECESSITY FOR R.F. CHOKES Ezra Parker, Rutland, Vt. (Q) Are R.F. chokes necessary in the plate and screen grid leads of the 35 R.F. amplifier in my set? (A) R. F. chokes are used to keep the R.F. currents in their proper path. Whether one or more R.F. stages are used, chokes should be used. (Q) What value bias resistor is needed for a 58 R.F. tube? (A) 300 ohms is the minimum but it is well to use 450 or 500 ohms. (Q) Could I obtain greater sensitivity by changing from a 35 to a 58 tube? (A) Due to the circuit connections with the 58 pentode, somewhat greater gain (A) Due to the circuit connections with the 58 pentode, somewhat greater gain can be realized, particularly below about 50 meters. ## Curing Interference Wm. Whitlock, Tulsa, Okla., wants to know: How to cure or help reduce inter- ference from a power leak? (A) The simplest method is to employ (A) The simplest method is to employ a counterpoise in conjunction with the antenna both of which are not more than 50 feet long. The coupling coil (antenna) should then be connected, one side to antenna and the other to the counterpoise. No ground should be used anywhere in the antenna system. The "B" negative and chassis in the receiver should be connected to a good ground. This method does not entirely eliminate the noise, but it does peak the interference at one or more points on the dial, allowing good reception in between. ## SHORT WAVE ESSENTIALS ## FOR MEMBERS OF THE SHORT WAVE LEAGUE . . THE following list of short wave essentials has been prepared from the suggestions to the LEAGUE by its members. A number of months were consumed in creating these short wave essentials for members of the SHORT WAVE LEAGUE. All essentials listed are approved by headquarters of the LEAGUE. A FEW WORDS AS TO THE PURPOSE OF THE LEAGUE The SHORT WAVE LEAGUE was founded in 1930. Honorary Directors are as follows: Dr. Lee de Forest, John L. Reinartz, D. E. Replogle, Hollfa Baird, E. T. Somerset. Baron Manfred von Ardenne, Hugo Gernsback, Executive Secretary. The SHORT WAVE LEAGUE is a scientific membership organization for the promotion of the short wave art. There are no dues, no fees, no initiations, in connection with the LEAGUE. No one makes any money from it; no one derives any salary. The only income which the LEAGUE has is from its short wave essentials. A pamphlet setting forth the LEAGUE'S numerous aspirations and purposes will be sent to anyone on receipt of a 3c stamp to cover postage. One of the aspirations of the SHORT WAVE LEAGUE is to enhance the standing of those engaged in short waves. To this end, the SHORT WAVE LEAGUE templies members with membership letterheads and other essentials. As soon as you are enrolled as a member, a beautiful certificate with the LEAGUE'S seal will be sent to you, providing 10c in stamps or coin is sent for mailing and handling charges. Another consideration which greatly The SHORT WAVE LEAGUE is a scientific membership organization for the for the coin is sent for mailing and handling charges. Another consideration which greatly benefits members is that they are entitled to preferential discounts when buying radio merchandise from numerous firms who have agreed to allow lower prices to all SHORT WAVE LEAGUE members. The radio industry realizes that, the more earnest workers there are who boost short waves, the more radio business will result therefrom; and a goodly portion of the radio industry is willing, for this reason, to assist SHORT WAVE LEAGUE members by placing them on a professional basis. SHORT WAVE ESSENTIALS LISTED HERE SOLD ONLY TO SHORT WAVE LEAGUE MEMBERS All the essentials listed on this page are All the essentials listed on this page are never sold to outsiders. They cannot be bought by anyone unless he has already enrolled as one of the members of the SHORT WAVE LEAGUE or signs the blank on this page (which automatically enrolls him as a member, always provided that he is a short wave experimenter, a short wave fan. radio engineer, radio student, etc.). If, therefore, you order any of the short wave essentials without filling out the blank (unless you already enrolled as a LEAGUE member), your money will be returned to you. LEAGUE member), your money will be returned to you. Inasmuch as the LEAGUE is international, it makes no difference whether you are a citizen of the United States or any other country. The LEAGUE is open to all. SHORT WAVE LEAGUE LETTERHEADS OFFICIAL SHORT WAVE LEAGUE LOG AND CALL BOOK OFFICIAL SHORT WAVE LEAGUE LOG AND CALL BOOK Here is the finest book of its kind ever published. It contains the largest listing of short wave stations in the world, much larger in fact than the list published in SHORT WAVE CRAFT and other magazines. All experimental stations, no matter where located, are listed. A large section is provided where calls can be listed in a proper manner. This log section gives dial settings, time, date, call letters, location, and other information. Another section has squared-paper pages on which you can fill in your own frequency curve for your particular receiver. It helps you to find stations which otherwise you could never log. It is the only book of its kind published. Prepaid 25c BADO MAP OF THE WORLD AND STATION FINDER RADIO MAP OF THE WORLD AND STATION FINDER The finest device of its kind published. The world's map on heavy board is divided into 23 sections, while the rotary disc shows you immediately the exact time in any foreign country. Invaluable in logging foreign stations. Also gives call letters assigned to all nations. Size 11"x22". C—Radio Map of the World and Station Finder. GLOBE OF THE WORLD AND MAGNETIC COMPASS. This highly important essential is an ornament for every den or study. It is a globe, 6 in. in diameter, printed in fifteen colors, glazed in such a way that it can be washed. This globe helps you to intelligently log your foreign stations. Frame is of metal. Entire device substantially made, and will give an attractive appearance to every station, emphasizing the long-distance work e operator. -Globe of the World. SHORT WAVE LEAGUE LAPEL BUTTON This beautiful button is made in hard enamel in four colors, red, white, blue and gold. It measures three quarters of an inch in diameter. By wearing this button, other members will recognize you and it will give you a professional air. Made in bronze, gold filled, not plated. Must be seen to be appreciated. E-SHORT WAVE LEAGUE lapel button. Prepaid 35C EE-SHORT WAVE LEAGUE lapel button, like the one described above but in solid gold. Prepaid \$2.00 These seals or stickers are executed in three colors and measure 1¼ in. in diameter, and are gummed on one side. They are used by members to alfix to stationery, letterheads, envelopes, postal cards and the like. The seal signifies that you are a member of the SHORT WAVE LEAGUE. Sold in 25 lots or multiples only. multiples only. G SHORT WAVE LEAGUE seals. per 25, Prepaid 15c SHORT WAVE LEAGUE. 98 Park Place, New York, N. Y. G-15c for 25 A-50c per 100 -25c per copy -25c each -\$1.25 each E-35c each | Application for Membership | |--| | SHORT WAVE LEAGUE | | SHORT WAVE LEAGUE (5-33) | | 98 Park Place, New York, N. Y. | | 1, the undersigned, herewith desire to apply for | | membership in the SHORT WAVE LEAGUE. In | | joining the LEAGUE I understand that I am not | | assessed for membership and that there are no | | dues and no fees of any kind. I pledge myself | | to abide by all the rules and regulations of the | | SHORT WAVE LEAGUE, which rules you are to | | send to me on receipt of this application. | | I consider myself belonging to the following class | | (put an X in correct space): Short Wave Ex- | | perimenter Short Wave Fan Radio Engi- | | neer Student | | I own the following radio equipment: | | Transmitting | | Gill Feltons | | Call Letters | | Receiving | | Name | | Name | | Address | | City and State. | | Country | | I enclose 10c for postage and handling for my | | Membership Certificate. | | | | | F—25c each | |---
---| | Gentlemen: I ant already an enrolled | 8 Park Place, New York, N. Y. I member in the SHORT WAVE LEAGUE attach my application to this coupon wing short wave essentials as listed in this advertisement: | | ************************ | for which I enclose \$
(The LEAGUE accepts n | noney order, cash or new U. S. Stamps in any denomination. Register cash and stamps.) | | | Name. | | | Address | | (5-33) | City and State | | NAME OF TAXABLE PARTY. | | To a few honest fellows I am offering an To a few honest fellows I am offering an opportunity to get a training and pay for it after they graduate in easy monthly payments. You get Free Employment Service for life. And if you need part-time work while at school to help pay expenses, we'll help you get it. Coyne is 33 years old. Coyne Training is tested—You can find out everything absolutely free. Just mail the Coupon for My Big Free Book. ## Jobs Leading to Salaries of \$50 a Week and Up Jobs as Designer, Inspector and Tester—as Radio Salesman and in Service and Installation—as Operator or Manager of a Broadcasting Station—as Wireless Operator on a Ship or Airplane, as a Talking Picture or Sound Expert—Hundreds of Opportunities for fascinating Big Pay Jobs 1 ## 10 Weeks' Shop Training AT COYNE IN CHICAGO We don't teach you from books. We teach you by Actual Work on a great outlay of Radio. Broadcasting, Television, Talking Picture and Code equipment. And because we cut out useless theory, you get a practical training in 10 weeks. ## TELEVISION Is Now Here! And Television is already here! Soon there will be a demand for Television Experts! will be a demand for Television Experts! The man who gets in on the ground floor of Television can have dozens of opportunities in this new field! Learn Television at Coyne on the very latest Television equipment. ## Talking Pictures A Big Field Talking Pictures, and Public Address Systems offer golden opportunities to the Trained Radio Man. Learn at Coyne on actual Talking Picture and Sound Reproduction equipment. duction equipment. ## **Get the Facts** Don't spend your life slaving away in some dull, hopeless job! Don't be satisfied to Work for a mere \$20 or \$30 a week. Let me show you how to make Real Money in Radio—the fastest-growing, biggest moneymaking game on earth! Get my big Free book and all details of my pay after graduation offer. Mail the coupon today. H. C. LEWIS, President | Radio Division, Coyne Electrical School | |--| | 500 S. Paulina St., Dept. 53-2K, Chicago, III. | | Dear Mr. Lewis: | | Send me your big Free Book; details of your Free Employment Service; and tell me all about your spe- | | cial offer of allowing me to pay for training on easy monthly terms after graduation. | | Name | | Address | | City State | ## "Short Waves in England" (Continued from page 7) come up to W2XAD for sheer "punch." The writer has been able to follow his 19.56-meter transmission from night to night for a fortnight or more, using a simple two-tube receiver, with just as much ease as if he were tuned to London Regional, putting out 70 kw. or so at a distance of fifteen miles. Strangely enough the Australian stations seem to be just as easily received here as the Americans, although they are not so consistent. VK2ME, when he does come over, rattles the 'phones in no mean manner. Judging from what we read in the American periodicals, we score over the listeners in the States (as yet) concerning "man-made static." Electrically-operated domestic appliances are not very common in England at present—certainly not outside the big cities—and, although there are no "silencing regulations" (again as yet) we are not much troubled by the sounds of dirty brushes and sparking comsounds of dirty brushes and sparking commutators. Broadcast stations, too, worry the English short-wave listener very little. This is thanks to the Regional scheme, whereby a small number of high-powered broadcasting stations serve this country. All the stations are run by one concern the B. B. C.—and we, therefore, do know just how we stand. Harmonics of broad-casting stations are practically unknown on short waves. ### The British Ham British "hams" do not have such an easy time of it as do the short-wave B.C.L.'s. To obtain a license for transmission one has to persuade the General Post Office that one "knows something" about the that one "knows something" about the subject. This, together with good reasons why one should be allowed to add another why one should be allowed to add another signal to the existing crowd, and the passing of a Morse test, completes the first ordeal of the "ham." But at this stage he is licensed for 10 watts only; this refers, too, to the input, not to the type of tube he is allowed to use! Further, it is pretty rigidly enforced he is allowed to use! Further, it is pretty rigidly enforced. It is this regulation, in the writer's opinion, that has kept amateur radio alive in this country. Hams starting up for the first time are not allowed to degenerate into mere QSL-collectors; they have to go ahead and make their 10 watts do something first, and that is a fine encouragement for some real experimental work. (Right! says we. If a regulation like this were imposed on U. S. "hams" perhaps we'd have less QRM and more "real fun."—Editor.) When they have had their "ten-watters" When they have had their "ten-watters" for some time—assuming that they have not been reported as being "off-wave" or not been reported as being "on-wave" or anything equally objectionable—the hams apply for a "50-watt" permit. This is gen-erally granted on the recommendation of the Radio Society of Great Britain (to which the vast majority of hams belong) and is issued only on condition that some form of frequency-stabilization is inof frequency-stabilization is inform stalled. This is responsible for the fact that nearly 90 per cent of the British "hams" are using crystal-controlled "gear." Though the writer is one of them, he is sufficiently proud of the British "ham" fraternity to state, here and now, that you will very seldom here a rotten note comwill very seldom here a rotten note com-ing from a "G" station. Equally he real-izes that you will never hear one coming from a good "W" station, but unfortu-nately there are still some bad ones left on the air! ## Time Difference Unfortunate The time-difference makes the Britisher unfortunate in one respect. During the period between 7 p. m. and 10 p. m., when listeners in the States are receiving Europeans, we over here have a very "dull time" of it. It is not until 10 or 11 p. m. that we can do much in the way of DX, except on the rare occasions when the South Africans are coming over. This applies particularly to the Summer and Fall! Generally, in the Winter and Spring, the "W's" start coming over quite early in the evening. But even that has a snag, for there are very few of them on the air between lunch and tea-time—the hours which, being translated into G.M.T., are roughly 6 p. m. till 10:30 p. m. The English ham works under another roughly 6 p. m. till 10:30 p. m. The English ham works under another big disadvantage. When general conditions or time of day are such that only signals up to about 1,500 miles are good, the "W's" can work each other to their heart's content. Not so over here; other G's are often quite inaudible and the only stations on the air are Hungarians, Finns, Swedes, Danes and Germans! Excellent stations, too, most of them, but there are so very few of them compared with the hundreds of W's that are on the air. This has the result that conditions appear to be extremely poor over here, when the only real reason for the absence of signals is the small number of active stations within workable distance. tions within workable distance. When conditions are good, however, as in the British Empire Radio Union tests this year, it is possible to keep up nonstop DX practically right through the twenty-four hours. The writer's own station, on one Sunday during the tests, established contact with Iraq at 1030, Egypt at 1130, Hong Kong at 1200, Barbadoes at 1230, Canada from 1330-1500, Ceylon and India at 1600, South Africa at 1700 and Australia right up till 2100. The 20 and 40-meter bands were both used for this work, and, as the tests were of an "Empire" nature, the many "W's" on the air had to be disregarded! had to be disregarded! had to be disregarded! The only peculiarities of conditions that seem to be at all regular here are these: East Coast Americans are nearly always best in February and March; and West Coast stations are very rarely heard at all, except during the early mornings in May and June, when they fill the entire band. We often hear fifty or sixty W6's and W7's without finding another signal of any kind; but only in May and June. ## SLIDE RULES . . Midget5in1CircularType: Metal 4" Dia. Price \$1.50 Case 50c extra $1.23^3 = ?\sqrt{50.41} = ?$ 1.245 = ? 1.245 = ? Tan 8°5' = ? Cot 79½° = ? 4½ X ½ = ? Log 56.25 = ? 6% of 145.0 = of 145.9 = ? 5.16-21+1.78=? these and dozens of other mathematical probabil and paper—by means of the Midget Slide solves any problem in multiplication division, and proportion. It also kiven roots and reportion. The seales give the since, coolines, name of all angles; also lors of numbers. Adds close. Approved by colleges. RADIO Slide Rule Short Wave Туре Price 50 cts. Price 50 cts. Printed on white bristot orda Size 75/2 Deery bort wave and radio extree ent must have this inuctance, apaneity, and coil-dimension side rule, t will answer such queone as: What is inducone as: What is inducinserter, winding, two naches long and having 30 uran per inch? What inding
lenath of No. 24 c. C. wire must be put inding lenath of No. 24 to the side of s Dataprint Co., Box 322, Ramsey, N. J. ## Receiver (Continued from page 27) the primary-tickler coil, and yet the regeneration is as smooth as silk. The coil values are given in a separate coil table. The set is built into an electralloy shield can, 14"x7"x6". The subpanel is a piece of heavy galvanized iron of the kind used for roofing, and its use makes the whole receiver very rigid. On the front panel are mounted only the band-spreading condenser C4 and the variable resistor R3 used as the regeneration control. Insidently, the persitive R buttery lead must cidently, the negative B battery lead must be broken when the set is turned off or this resistor will draw current all the time. this resistor will draw current all the time. At the left end the phone jack and Yaxley cable plug are placed. The jack is a combination jack and switch. The phone leads were brought out at this end in order to have the cord out of the way. A left-handed operator should build his receiver in the opposite direction. At the right end are the two coils, the antenna binding post, and the main tank tuning condenser C5. The R.F. coil is unshielded, but the detector coil is shielded by a National type B-30 coil shield with removable base. The R.F. coil L is always the detector coil next in size above the one used in the detector wave spectrum in which operation is desired. For example when the twenty meter coil is in the detector socket, the forty meter coil is placed in the R.F. coil socket. In this set five prong coil sockets are used but only four of these are necessary, although the feft capt is handy for example In this set five prong coil sockets are used but only four of these are necessary, although the fifth one is handy for experimenting with inductive coupling to the R.F. stage. This is frequently advised for best results in bringing in phone stations. None of the values for the fixed condensers seem to be at all critical, but they should all be high-quality mica condensers except the 1 mf. condenser C8. Both R.F. chokes are Pilot short-wave chokes. Impedance coupling from the detector to Impedance coupling from the detector to the audio stage is used because the relatively large plate impedance of the screen-grid detector will not allow the use of an audio transformer method of coupling, and, while resistance coupling, would give better quality, there would be too much voltage drop through the plate resistor. The impedance used here is a Pilot audio transformer with the primary and secondary connected in series, but and secondary connected in series, but any other audio transformer connected this way or a regular coupling impedance will serve very nicely. will serve very nicely. The National Company makes a coupler especially for screen-grid detectors, which probably would help results both in amplification and quality. This coupler contains the impedance, coupling condenser and grid resistor. The coupling condenser C4 used in this particular set is not critical in value, but better bass response could probably be secured by using one with a capacity of .01 mf. The grid resistor R2 value may vary from 50,000 ohms to five megohms with little change in results. Any handy resistor between these values will work, depending, of course, on the C bias. From six to nine volts of bias battery seems about right with a plate voltage of 135 on the type 30. Really this set was easier to get working Really this set was easier to get working well than the old 01A receiver. None of the usual troubles often encountered with screen-grid tubes was found here. This circuit chould work a way hours better with the screen-grid tubes was found here. This circuit should work even better with the six volt "auto" tubes because of the relatively low plate impedance of the type 36. Perhaps some of the readers of SHORT WAVE CRAFT will do some experimenting with this circuit. They should find it worthwhile, if one is to judge by the excellent results secured with this receiver. This station is interested in operation only in the 7 and 14 megacycle bands, so the receiver was designed and built with the hope of securing the best operation in these bands. That hope panned out fine. On 7 mc. satisfactory operation is secured with the speaker any time in the day. A 2-Volt, 3-Tube "Ham" | The Improved 12,500 Mile Two Tube **Short Wave Receiver** The sensationally popular 12,500 MILE receiver—improved—refined—and available in complete kits that are so easy to assemble. Our Engineering Department incorporated new features such as velvet regeneration control with no detuning effect, ultra low loss condensers of advanced design, friction drive (no backlash) vernier dial for easy tuning, metal chassis and panel for efficient shielding (eliminating hand capacity) and other carefully selected attested refinements, resulting in a receiver that by far outperforms the original. tested refinements, resulting in a receiver that by far outperforms the original. These kits contain every necessary part of highest quality. All high frequency insulation is genuine Bakelite. The coils, which tune from 15 to 200 meters are wound on polished Bakelite forms. (Prices include wound coils.) The sockets are Bakelite. All losses are minimized: The attractive crystal finished chassis and panel has all holes needed to mount the apparatus and this, together with our complete, detailed instruction sheets, simplifies construction. Only by Durchasing in large quantities are we enabled to offer these this is the ORIGINAL 12,500 Mile kit. (See our ad in the March Short Wave Craft.) BATTERY MODEL These with the content of the parts are all first grade, too! BATTERY MODEL These with the content of the parts are all first grade. The content of the parts are all first grade. The content of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. The part of the parts are all first grade. grade are all first grade. The parts are all first grade. The parts are all first grade are all first grade are all first grade. The parts are all first grade are all first grade are are all first grade. The parts are all first grade are all first grade are are all first grade. The parts are all first g Uses two 280 tubes. Batteries required are two dry cells (or a 2-volt storage cell) and two 45 volt B Batteries. It you have a 6-volt storage battery you may use 201-A's. \$4.75 COMPLETE KIT Uses two of the new type 56 or 27 tubes. Power is obtained from the AC Power Pack listed below (or any GOOD pack), or it may be run on a 2½ volt filament transformer and two 45 volt batteries. - SPECIALS - COMPLETE KIT . . Amateur Call Books. Prepaid \$1.00 Amateurs Hand-book \$1.00 A m a teurs 11 and pook 51.00 Eby moulded sockets. 4 or 5 prong 12c, 6 prons 15c. Sub-panel water sockets, 60c doz. Na-Ald 1 arg e Coil Forms, 14c. Set of 4 plug-in coils. 15 to 200 meters, \$1.15. Tube base type, 80c. New Bakelite tube bases. 4 or 5 prong. Star for 25c. Hammarlund 140 mmf. Isolantite variable condensers. \$1.15. Hammatung 47 St. 15. EC-80 Equalizers (Postage stamp), 15c. Pliot Bakelite 4" dials, 15c. Cornell Art-metal Vernier Dials—35c. CREBE Transmitting RF Chokes. 1"x4", Will pass 300 MA., 23c. 5 for \$1.00. Erpee light-weight phones, \$1.45. ## -AC POWER PACK- measuring only 3½x7x B, and C voltage for eiver. Even one using also be used for low-provision for dynamic ne 280. Output: 250 nd 2½ Volts AC at 5 including and full \$4.85 \$5.75 350-0-350, 5, and 2½ volts, \$1.95. PlLOT uncased power transformer. 350-0-350 high voltage, 5 V, and 2½ at 5 Amps. Special 38. Special 200-220-240 volt primary power transformer. Delivers PlLOT uncased power transformer. Beary Duty (Jumbo block). 325-0-325, 5, 2½ at 4 amp. and 2½ at 6 amp. 5 lbs. Excellent for 215 or 247 Amplifier or transmitter. Special 98c. Brunswick 30 henry, 80 MA chokes, 45c. Thordarson 20 henry 125 MA chokes, 80c. Special metal cased filament transformer. Delivers 2½ volts at 10 Amps. Binding hosts on bakelite panel. With cord and plug. SPECIAL 54.25. RCA Licensed TUBES A compact power unit measuring only 3½x7x 4½ high. Delivers A. B, and C voltage for up to a four tube receiver. Even one using a power tube! Can also be used for low-power transmitter. Provision for dynamic field supply. Uses one 280. Output: 250 Volts DC at 50 MA and 2½ Volts AC at 5 Amps. Complete KIT including stamped metal chassis and full \$4.85 instructions Wired and Tested. \$5.75 RCA Licensed TUBES ## ROYAL- ## SHORT WAVE RECEIVERS Reliable Performance— Reasonably Priced When you buy a SW receiver, BUY THE BEST! We recommend Hammarlund, National, and Royal. See previous ads or send for literature and our wholesale prices. ## FILAMENT TRANSFORMERS | Neat | , me | tal | cased 1 | ransfor | mers fo | r all | Pui | poses. | 2000 | |------|------|-----|------------|--------------|----------|-----------|------|--------|--------| | | | | on test. | Conse
89c | ervative | y ra | ted! | Amp. | \$1.40 | | 5 | voit | 4 | Amp. | \$1.20 | 6.3 | volt | 3 | Amb. | 1.45 | | | | | Amp. | 1.25 | 10 | voit | 4 | Amp. | 1.85 | | _ | | | BALL TOTAL | ON1 - 1 | DIETO | 2 00 2 22 | ror. | | | We are NATIONAL DISTRIBUTORS of every advertised line and can supply your entire wants at the lowest prices. Send in your list for our quotation or just order everything you need. We will make immediate shipment of your order and guarantee our prices to be lowest! A trial will convince you! # Every tube tested and carefully packed, insuring its safe delivery to you! Fully guaranteed for THREE MONTHS. 201-A 39c 233 85c 56 55c 210 \$1.40 236 95c 58 70c 227 45c 237 95c 280 A5c 230
70c 238 95c 281 \$1.35 232 80c 47 69c 866 1.85 All other types at Lowest Prices COLUMBIA "GEM"-An efficient battery operated 8 W Receiver using three screen stid 232 tubes. It also, regenerative detector, and high-gain amplifier. In art metal cabinet 11"x12"x7" with hinged cover. (Batteries fit inside.) Full vision vernier dial. Tunes from 14 to 290 meters. This is the receiver sold by the Columbia Specialty Co. in August Short Wave Craft for \$13.75. Our special price for the original and complete KiT including stamped metal chassis, panel, and cabinet with full instructions is only A few wired models at. \$10.95 \$7.95 Chassis. panel. and cabinet alone \$2.50 SEND YOUR ORDER NOW! SATISFACTION GUARANTEED! Prices F. O. B. New York. Deposit Required. VISIT OUR SALES ROOMS. ## HARRISON RADIO CO. THE HOME OF FOUR STAR SERVICE * * Dept. C-19 New York City Naturally there are always plenty of loud Naturally there are always plenty of loud signals when one is using the earphones. The volume falls off a little on the 14 mc. band, but there is plenty of "sock" left to bring in DX (distance) easily. The 14 mc. phone stations are usually loud enough to use the speaker in the evenings from four to eight p. m. in anything like favorable weather. All in all, no better receiver is desired at this station, and that is saying plenty. ### Coil Table for Ewing Receiver is saying plenty. | | Grid | | tickler | | | | | |----------|-------------|------------|---------|-------------|--------------|--|--| | | coil
Le2 | Wire | coil | Wire | Spac-
ing | | | | 20 meter | | No. 30 DSC | | | 3/8" | | | | 40 meter | 12 | No. 26 DCC | 11 No | . 30 DSC | 9/16" | | | | 80 meter | 26 | No. 30 DCC | 21 No | . 30 Enamel | 9/16" | | | For antenna coil L1 for use on the 80 meter band, wind a special coil containing 55 turns of wire. (Note) All coils are close-wound except the twenty meter one, on which the spacing must be found by experiment. The forty meter primary-tickler coil spacing should also be varied some in order to find the best value. ### Condenser and Resistor Values -.006 mf. C2-.006 mf. C3-.0001 mf. C7--.005 mf. C6-00004 mf. C8—1 mf. R1—2 megohm R2—2 megohm R3—50,000 ohm Potentiometer T—Pilot Audio Transformer RFC-Pilot Short Wave Choke C4-.0001 mf. Pilot Midget C5-.0001 Pilot midget, cut down to four ## DATAPRINTS Give Technical Information on the Building of Worthwhile Apparatus Dataprint containing data for constructing this 3 ft. spark Oudin-Tesla coil. \$.75 ## **OTHER "DATAPRINTS"** TESLA OR OUDIN COILS | 36 inch spark, data for building, including condenser data | 0.75 | |---|------| | 8 inch spark, data for building, including con-
denser data | 0.75 | | Violetta type, high frequency coil data; 110 yolt A.C. or D.C. type; 1" spark; used for | | | kiving "violet ray" treatments | 0.75 | | How to operate Oudin coil from a vacuum tube oscillator | 0.75 | # TRANSFORMER DATA Any size, 200 to 5000 watts. (1 primary and 1 secondary voltage data supplied—specify watts and voltage desired) 51.00 1 k.w. 20,000-volt transformer data, 110-volt. 60-cycle primary. Suitable for operating 3 ft. Oudin coil 0.50 ## Oudin coil 0.50 k.w. 15,000-volt transformer data, 110-volt, 60-cycle primary. Suitable for operating 8inch Oudin coil 0.50 Induction Colle—1 to 12 inch spark data 0.75 ## | MOTOR—1/16 H.P., 110 volt A.C. 60 cycle (suitable for driving 12" fan or hight apparatus), constructional data | | |--|--| | 60 cycle Synchronous motor. | | | TELE | RA | PHON | E—R | ecords | V | olee | er | | |------|------|----------|-----|--------|------|-------|-------|------| | "Con | te'' | signals | on | steel | wire | by | mag- | | | | | Code | | | | | | | | and | tra | nslated | 115 | 0W". | Cor | nstru | etion | | | data | (sp | eciai) . | | | | | \$ | 0.50 | | | | | | | | | | | | C | | | | | | | ringer. | | | |---|------|-----|----|-----|----|-----|----------|-------|----------| | | make | one | to | fit | on | any | ordinary | clock |
0.50 | ### MISCELLANEOUS DATAPRINTS- | Zilottilo ico billitto Zion to illimotilitti | 0.00 | |--|------| | How to Thaw Pipes by Electricity | 0.75 | | 20 motor elreuits—hook-ups | 0.75 | | 20 practical telephone hook-ups | 0.50 | | Treasure Locator | 0.50 | | 100 mechanical movements for inventors | 0.50 | | Polarized Relay-Ultra Sensitive | 0.50 | | Electro-medical coll (shocking coil) | 0.50 | | REFRIGERATION" MACHINE - Dataprint - | | | How to Make Data | 1.00 | | GLIDE BILLES Specially Salested | | | | | ## | ELECTRICAL Silde Rule, 10 inch size, will special electrical law ratios and indexes, wo with white ivorine scales, prepaid | th
od | |--|------------| | 5" "Pocket" slide rule | 4.00 | | "Circular Pocket" slide rule. Fits vest pocke | t,
4.00 | | Student's circular slide rule | 1.50 | (Postage 10 cents extra on last three slide rules.) ## The DATAPRINT COMPANY Lock Box 322 RAMSEY, N. J. ## S-W Record Set by League Report (Continued from page 8) telephone "tone line" direct to the radio room of The Times Annex Building on Forty-third Street. ## Inked Tape Record Made An operator wearing ear-phones copied the words on a typewriter. At the same time a tiny inked needle recorded the electric impulses on an automatic receiver. This system served as a double check on accuracy. The report was broadcast from the League of Nations' powerful short wave transmitting station at Geneva, Switzerland. It was originally intended, according to various reports from the Geneva station, to transmit the report at fairly high speed, but when the transmission actually started the speed was found to be approximately thirty words per minute. Even though higher speeds were asked for by Japanese receiving stations in Tokyo, and the Chinese station at Shanghai pleaded with Geneva for an increased speed of 100 words a minute, the sunlight zone on the earth began to change and the transmission characteristics likewise changed. The League consulted other stations at various points, such as Rio de Janeiro and Buenos Aires, and found the latter could not receive more than thirty-five words a minute, so the transmission ended at that speed. The League of Nations' station was handled by its regular personnel, num- when it was all over Washington commented, "We get you fine and solid. Do not need any repetitions." The same was true at The New York Times receiving station. Shanghai said, "Fine tape; pity you could not increase speed." The operators at Nagoya reported receiving conditions good to fair, but they asked for repetition of 200 words. Buenos Aires was bothered by static and needed 1,000 words repeated. Rio de Janeiro requested repetition of 200 words. Australia missed considerable portions of the broadcast because of fading. ### Description of Receiver A few words regarding the remarkably efficient short wave receiver employed by the New York Times radio station in picking up the message for the ten hour period in Geneva will undoubtedly prove of interest to our readers. Mr. F. E. Meinholtz, who is in charge of the radio and tele- graph service operated by the New York Times, kindly permitted the writer to inspect the receiver, designed and built by R. J. Iversen of the New York Times, which was used for the remarkable short wave achievement. As the diagrams and photos show, the receiver, which was installed in an apartment house in Astoria, Long Island, utilized four stages of tuned radio frequency amplification employing vario-mu screen grid tubes, which yielded very high gain or amplification and extreme selectivity. A screen grid tube was likewise used in the detector stage, which was provided with sufficient regeneration through a feed back coil to permit the reception of uninterrupted C.W. signals. Some of the transatlantic short wave transmissions take place with interrupted C.W. signals and, in that event, no regeneration or separate oscillator: regeneration or separate oscillator. Two ordinary stages of transformercoupled audio frequency amplification are built into the special receiver, which the engineers on the New York Times staff built at a cost of approximately \$300.00. All of the stages are carefully shielded and all of the shielding, including the external cabinet, is made of %" copper, the inside of the shield compartments being painted a light color while the outside is treated with a black crystalline finish. In the A.F. stages a couple of type 27 In the A.F. stages a couple of type 27 tubes are used, but of course the experimenter could place a 47 pentode or other heavy duty output tube in the second A.F. stage if he wished to. The reason why the A.F. output stage is not designed particularly for heavy duty is due to the fact, as happened in the present instance, that the signal picked up by the receiver was passed through a power amplifier, the signal then being transmitted over a two wire telephone circuit as shown in the diagram, and again amplified by passing it through a recorder amplifier in the New York Times Building in New York City. The highly amplified signal as it emerged from the amplifier is then connected to the headphones worn by the operator who was copying the message on a typewriter; at the same time the signal current was connected to a siphon type tape recorder, and the dots and dashes comprising the signals were permanently recorded on the moving paper tape, a specimen of which Typical 3-Stage T.R.F. Receiver of the type used in N. Y. Times pick-up of "League of Nations" Report is reproduced as a border for this article. Is reproduced as a border for this article. In Astoria two short wave doublet
antennas had been erected, one for 21 meter reception and the other for 38 meter reception. The aerial currents were lead down through twisted feeders to the receiving room. At this point, an operator sat before the receiver shown in the photos and whenever the signal fell below a certain level or vice versa, it was brought back to the proper level. and whenever the signal fell below a certain level or vice versa, it was brought back to the proper level. The operator in Astoria monitored the reception continuously by means of a pair of phones and "current level" indicator. Referring once more to the receiver, those interested in building up such a receiver should refer to page 525 of the January, 1933, issue of Short Wave Craft, where they will find an article by Mr. Burton Currie entitled, "A DeLuxe T.R.F. Receiver." Mr. Currie's receiver shows wirring diagrams. etc., for two tuned R.F. stages and the New York Times receiver which received the Geneva ten hour message has two more stages of T.R.F., (i.e. four tuned circuits—Editor) which is practically a duplicate of those shown in Mr. Currie's article. In Mr. Currie's description all details are given for coils, tuning condensers, cathode bias resistors, by-pass condensers, etc. It is interesting to note that the New York Times receiver have illustrated uti- condensers, cathode bias resistors, by-pass condensers, etc. It is interesting to note that the New York Times receiver here illustrated utilized National R.F. coil forms, which are made of low loss composition R-39. Note particularly that a distance of two inches and more in most cases is left between the R.F. coils and the copper shielding in any direction to minimize losses by induction in the shielding metal. The method of coupling the antenna to the tuned secondary of the first R.F. coupler is novel and is worth the attention of anyone attempting to build a set of this type. The coupling coil, which may comprise from six to ten turns of No. 18 silk covered or enameled wire, is wound in a slot in pancake form on a bakelite disc of about the same diameter as the secondary coil form; this disc, containing the primary or antenna coil, is mounted on a rod fitted with a knob mounted on the front panel so that the degree of coupling can be varied. The three main tuning condensers of the three R.F. stages are ganged, but of course if you wish they may be tuned separately with the separate dials. The fourth tuned circuit or detector stage has a drum dial of its own in the New York Times receiver. Small trimming condensers are connected across all of the tuning condensers and the small knobs controlling these trimming condensers are mounted along the bottom on the front panel of the sereen grid. along the bottom on the Alone paset. The regeneration control in the detector circuit may very well be of the screen-grid potential regulation type as indicated in the diagram, the voltage supply of the screen grid to the detector tube being varied by means of a 50,000 ohm potentiometer connected between "B" minus or ground and "B" plus 80 volts or higher. Where the two lead-in wires from the transposition lead-in of the aerial doublet are connected to the coupling coil as shown in the diagram, two small variable conden- in the diagram, two small variable condensers of about 50 mmf. may be connected in series with the two lead-in wires, these being used to balance up the antenna system to particular transports. being used to balance up the antenna system to perfect resonance. For plate supply well filtered D.C. is obtained for the amplifier stages from a National plate supply unit in the New York TIMES radio receiving laboratory, and "B" batteries may supply the plate voltage for the detector unit if power line fluctuations make the high voltage unstable. unstable. Be On Your Toes for **New Surprises** in Next Issue!! NEW NATIONAL PR-7 SUPER-HET! 7-TUBE Amateur type Short Wave Super. Easily converted to Sincle-Signal. Uses '59, 57, 22-38, '59, 22-28; has TRF for finace suppression, two high-sain IF staces. Compact—measured 115' 12'; all-controls and tuning chart was nance—and the coils plug in from front of panel. This is A receiver. LOWEST PRICE IN THE COUNTRY—WRITE FOR SEND FOR FREE HAM SHEET AND CATALOG ## USE These PARTS ## When You Build Short-Wave ## NEW INTERMEDIATE-FREQUENCY TRANS-**FORMERS** Same as used in National "AGS" Communication Type Receiver and new National FB-7 Ham-Band Receiver. Litz wound, 500 kc. Equipped with trimmer adjustments for peaking that are readily accessible from top of transformer, without removal of chassis from cabinet. NEW FRONT-OF-PANEL COIL **FORMS** With grounded and shielded cast-metal end-handle. Form made of R-39 low-loss coil form material, especially developed for National, and containing internally mounted Isolantite-base-adjustable padding-condenser. Made to fit any National front-of-panel-change coil shields;—also available complete with shielded sockets. ## SEU CONDENSER For short-wave work only. Heavy double-spaced, rounded edge 270° plates, constant low impedance pixtail. Isolantite insulation, for single hole panel- or base-mounting. Any capacity up to 25 mmf. For uning or neutralizing in low power transmitters. For short-wave work only NATIONAL ISOLAN-TITE SOCKET Isolantite tube and coll sockets, glazed upper surface, give maximum efficiency in ultra high frequency circuits, suitable for sub-panel or base-board mounting, in standard 4, 5 and 6-prong types—now also aradiable in 7-prome type. ## TYPE 100 RADIO FREQUENCY CHOKE Extremely low distributed capacity, four narrow sections universal wound, spaced on Isolantite form. Has stiff leads for mounting but fits in grid leak clips. 50 ohms DC res.; dist. cap. 1 mmf.; induct. 2½ mh.; rated at 125 MA. ## NEW TYPE BX VELVET VERNIER DIAL, WITH **VERNIER INDEX** Equipped with well-known National B-Dial Velvet-Vernier drive and variable ratio, 6-1 to 20-1.—and with new vernier index, reading accurately to 1/10th division. Permits accurate logging so necessary in short wave work. SC-5-33 ## NATIONAL **PRECISION** SHORT-WAVE PARTS & RECEIVERS SEND IN COUPON TODAY NATIONAL COMPANY, Inc., 61 Sherman Street, Malden, Mass. Gentlemen: Please send me your new catalogue sheets giv-ing full description and prices of NATIONAL Short-Wave Sets and Parts. | Name | | |---------|--| | | | | Address | | | | | How to Get Licenses for Amateur Radio Stations (Continued from page 28) take home, fill out, have notarized, and send to the Federal Radio Commission, Washington, D. C. Get all this straight: all matters concerning operator's licenses are handled by the local office; all matters concerning station licenses are handled directly by the Commission in Washington. DO NOT SEND the station application to the local office. the local office. Formerly two station application blanks, in duplicate, were required. Now you need only one. Be sure to answer all questions that apply to you, and don't forget the notarization of the properties. tarization, or your application will come tarization, or your application will come back. Because of the steadily increasing number of amateur station license requests that are pouring into the office of the Federal Radio Commission, there is some delay in the issuance of the actual licenses. Be patient and don't bother the Commission with letters after you have sent in your blank. Figure on a wait of at least three weeks and as much as six. If you have your operator's license, and have filled out the form properly, the station "ticket" will come through automatically. Both operator's and station licenses now run for three years. These licenses represent a very valuable privilage, granted by the government at no cost to you; take care of them and obey the law and you will be proud of your standing as a "ham." District No. 1 States of Maine, New Hampshire, Vermont, Massachusetts. Connecticut and Rhode Island. District No. 2 City of Greater New York and the Counties of Suffolk, Nassau, Westchester, Rockland, Putnam, Otanne, Dutchess, Clister, Sullivan, Delaware, Greene, Columbia, Albany and Rensselaer of the State of New York, and the Counties of Bergen, Hudson, Passaie, Sussex, Warren, Morris, Essex, Unlon, Somerset, Middlesex, Monmouth, Mercer, Hundron of the State of New Jersey. cer, Hunterdon of the State of New Jersey. District No. 3 City of Philadelphia and the Counties of Bucks, Montsomery, Philadelphia, Delaware, Chester, Lancaster, York, Adams. Cumberland, Perry. Dauphin, Lebanon. Berks. Schuylkill, Lehanon. Berks. Schuylkill, Lehanon. Gerkon, Carbon and Monroe of the State of Pennsylvania, and the Counties of Ocean, Burlington, Atlantic, Cape May, Cumherland, Salem, Glouceater and Camden of the State of New Jersey: State of Delaware. District No. 4 State of Maryland. the District of Columbia, and the Counties of Arlinston, Loudoun, Fairfax. Prince William. Fauquier, Happahannock, Pace, Warren, Shenandoah, Frederick and Clark, of the State of Virginia. District No. 5 State of Virginia. the State of Virginia. District No. 5 State of Virginia, except the Counties of Arlinston, Loudoun. Fairfax. Prince William, Fauquiler. Rappainannock, Page et Warren. Shenandoah. Frederick and Clark, and the State of North Carolina. except the Counties of Ashe, Warauga. Caldwell, Avery. Burke, McDowell. Yancey. Mitchell, Madisann. Buncombe. Haywood, Swaln, Graham, Cherokee. Clay. Macon. Transylvania, Henlerson, Polk, Itutherford and Cleveland. District No. 6 States of Alabama. District No. 7 The State of Flor- District No. 9 Counties of Jefferson. Chambers, Harris. Galveston. Fort Bend, Brazoria. Wharton. Matagorda, Jackson, Victoria, Calhoun, Gollad. Refugio, Aransas. San Patricio. Mueces, Jim Wells. Kleberg, Brooks, Kenedy, Willacy, Hidalro, and Cameron of the State of Texas. District No. 10 State of Texas, except the Counties of Jefferson. Chambers, Harris, Galveston, Fort Bend, Brazoria, Wharton, Matagorda, Jackson,
Victoria, Calinoun, Goliad, Refuglo, Aransas, San Patriclo, Mueces, Jim Wella, Kle- berg, Brooks, Kenedy, Willary, Hidalgo and Cameron, and the States of Oklahoma and New Mexico. District No. 11 Counties of Monterey, Kings, Tuiare, San Luis Obispo, Kern, Santa Barbara, Venfura, Los Angeles, Orange, San Dieso, Imperial, Riverside, and San Bernardine of the State of California; the County of Clarke of the State of Nevada, and the State of Arizona. District No. 12 State of California of Arizona. District No. 12 State of California, except the Counties of Monterey, Kings, Tulare, San Luis, Obispo, Kern. Santa Barbara, Ventura, Los Angeles. Orange, San Diego, Imperial, Riverside and San Bernardino, and the State of Nevada, except the County of Clark. District No. 13 State of Oregon and the State of Idaho, except the Commiles of Boundary. Bonner, Kootenal. Shoshone, Benewah, Latah. Clearwater, Nez Perce, Lewis and Idaho and Idaho and Idaho. District No. 14 State of Washington, the Counties of Boundary, Bonner, Kootenal, Shoshone, Benewah, Latch, Clearwater, Nez Perce, Lewis and Idaho of the State of Idaho; and the Counties of Lincoln, Flathead, Glacier, Toole, Pondera, Teton, Lake, Sanders, Mineral, Missoula, Powell, Lewis and Clarke, Cascade, Meagher, Broadwater, Jefferson, Granite, Rayalli, Deerlodge, Silver Bow, Beaterhead, Madison, Gallatin of the State of Montana, and Territory of Alaska. District No. 15 States of Colo- and Territory of Alaska. District No. 15 States of Colorado. Utah. Wyoming, and Montana except the Countles of Lincoln. Flathead, Glacier, Toole. Pondera, Teton. Lake, Sanders, Mineral, Missoula. Fowell. Lewis and Clarke. Cascade. Mensher. Broadwater, Jereson. Earnite, Rasalit. Deerlodge. Silver Boy. Beaverhead, Madison and Gallatin. and Gallatin. District No. 16 States of South Dakota, North Dakota, Minnesota, the northern peninsula of Michigan, and the State of Wisconsin, except the Counties of Crawford, Richland, Sauk, Columbia, Dodge, Washington, Ozaukee, Milwaukee, Waukesha, Jefterson, Dane, Jowa, Grant, Lafayette, Green Rock, Walworth, Racine and Kenosha. cine and Kenosha. District No. 17 States of Nebraska, Kansas, Missourl and Iowa, exeept the Counties of Winneshlek, Killamakee, Fayette, Clayton, Buchanan, Delaware, Dubuque, Linn, Jones, Jackson, Cünton, Cedar, Johnson, Washington, Muscatine, Scott, Louisa, Des Moines, Henry and Lee. District No. 20 Control of Particular States Par scott. Louisa, Des Moines, Henry and Lee. District No. 18 States of Indiana, Illinois and the Counties of Winneshiek. Allamakee, Fayette. Clayton, Buchanan, Delaware, Duhuque, Linn. Jones, Jackson. Clinton, Cedar, Johnson, Washington, Musea, Henry and Lee of the State of Iowa, Illine. Scott, Louisa. Des Moines, Henry and Lee of the State of Iowa, Illine, Scott, Louisa, Des Kate of Kushington, Ozaukee, Milwakee, Washington, Ozaukee, Milwakee, Waukesha. Jefferson, Dane, Iowa, Grant, Lafayette, Green Rock, Walworth, Racine and Kenosha of the State of Wisconskin. District No. 19 State of Michigan, except the northern peninsula and the States of Ohio, Kentucky and West Virginia. District No. 20 State of New min me states of Onio, Kentucky and West Virginia. District No. 20 State of New York, except the City of Greater New York and the Counties of Suffolk. Nassau, Westehester, Rockland. Putnam, Orange. Dutchess, Ulster. Sullivan. Delaware, Greene. Columbia, Albany. and Rensselaer; the State of Pennsylvanla. except the City of Philadelphia, and the Counties of Bucks. Montcomery. Philadelphia. Chester. Delaware, Lancaster. York, Adams. Cumberland. Perry. Dauphin. Lebanon. Berks, Schuylkill. Lehigh, Northampton, Carbon and Monroe. Hawaii is attached to District No. 12. Porio Rico and the Virgin Ids. No. 12. Porto Rico and the Virgin Ids., are attached to District No. 7. 1105 Rives-Strong Building, Los Angeles, Calif. Customhouse, San Francisco, Cailf. 227 Postoffice Building, Portland, Ore. 1012 Exchange Building, 538 Customhouse, Denver, Colo. 413 Federal Building, St. Paul, Minn. 231 Federal Building, Kansas City, Mo. 2022 Engineering Building. Chicago, Ill. 2909 David Stott Building, Detroit, Mich. 514 Federal Building. Buffalo, N. Y. ## YOU'LL NEVER GUESS WHAT KIND OF S-W RECEIVER The June Cover will Feature! U. S. INSPECTION DISTRICTS Radio Inspector Customhouse, Boston, Mass. U. S. Sub-treasury Build-ing, New York, N. Y. Gimbel Building, 32 South Ninth St., Philadelphia, Fort McHenry, Baltimore, Md. Custoinhouse Norfolk, Polk, Rutherford and Cleveland. District No. 6 States of Alabama, Georgia, South Carolina, Tennessee, and the Countles of Ashe, Watara, Caldwell, Avery, Burke, McDowell, Yancey, Mitchell, Madison, Buncombe, Haywood, Swain, Graham, Cherokee, Clay, Macon, Jackson, Transylvania, Henderson, John Rutherford, and Cleveland of the State of North Carolina. District No. 8 The States of ouisiana, Mississippi and Arkan- 1424 Dade County Building, Miami, Fla. Customhouse. New Orleans. 209 Prudential Bldg., Galveston, Texas Designed by ## Clifford E. Denton The Ace of Short Wave Engineers and Chief Engineer of Federated Purchaser, Inc. ceiver for battery operation. Cevers from 15 to 200 meters. Sold in Kit form or factory assembled. ### The Air-Rover Model 10 A The Argonaut Model 15 A A two tube receiver for the beginner. Battery operated. Cov-ers from 15 to 200 meters. Sold in Kit form or factory assembled. ## The Discoverer Model 20 A A 5 tube T R F receiver. AC operated. Powerful and sensitive. Complete in every detail. Covers from 15 to 200 meters. Sold in Kit form or factory assembled. Available for battery operation also. ### The Commander Model 25 A A seven tube superheterodyne AC operated. A master receiver! Covers from 15 to 200 meters. Sold in Kit form or factory assembled. Also available for battery operation. ## The Master Explorer, Model 30 A—An Eight Tube Commercial Type Superheterodyne Precision built. A professional receiver with tremendous power and sensitivity. For C. W. and phone. Beautifully finished in chromium and black. Sold in Kit form or Factory assembled. For more information concerning these marvelous receivers address Mr. Clifford E. Denton at ## rederated Purchaser Inc. 25 Park Place New York City, N. Y. ## Both Ends of Phone Talk Now Heard (Continued from page 12) check over all connections and make sure that the leads running to the plate connected properly. The circuit coil are connected properly. The circuit diagram has the socket terminal markings for the various coil terminals and should be followed carefully. ## Parts List One Silver Marshall A.F. transformer, type One Silver Marshall A.F. transformer, type 240 (T1) Two Hammarlund S.W. R.F. chokes type CH8 (R.F.C.1 and R.F.C.2) Two Hammarlund .0001 mf. tuning condensers, type MC100M (C3, C4) Two Antenna series condensers; see text for construction. (C1, C2) Two National S.W. receiving condensers, .00015 mf. (C5, C6) One set Alden S.W. coils. (L1, L2). See page 55. Two Eby sockets, 4-prong type, for L1 and L2 Three Alden four-prong sockets for tubes. (V1, V2, V3) Two Illini .000125 mf. mica condensers. (C7, C8) (Polymet) One Flechtheim tubular condenser, .0015 mf. (C9) (Polymet) Two International Resistance Co. resistors, 3 meg., 1 watt. (R1, R2) (Lynch) One Blan-the-Radio-Man 7 by 12 aluminum panel. inum panel. One wooden baseboard, 8 by 11 inches. One Aluminum Company of America alum- inum partition. Wire, wood screws, Fahnestock clips, etc. ### Some "Dual Wave" Reception Pointers by Leslie W. Orton of England Mr. Orton is Hon. President, AngloAmerican Radio & Television Society; Hon. President, International Radio Society; Editor, "Radio," etc, (all of England). It is a frequent experience among short-wave listeners to tune in a station carrying out tests with another station. With the normal short-wave receiver only half the conversation can be heard unless, as occasionally occurs, the station re-ceived has a loud speaker connected up near the microphone so that both ends of the conversation are audible to the lis- It was with a view of overcoming the annoyance of being restricted to hearing only one side of test conversations that I set about designing a receiver capable of receiving two stations at once. set about designing a receiver capable of receiving two stations at once. Figure 1 (diagram is practically like one shown—Editor.) is the outcome. It will be clear to any technical minded listener that the arrangement comprises two detector stages, followed by an audio-frequency stage. Now if one detector is tuned to one station and the other to the other, it is possible to hear two stations at the same time. Besides making the reception of two stations possible, this arrangement has also another advantage. Let me explain: If we tune one detector to one of the Daventry Empire stations and the other to another of the Empire stations, broadcasting the same program, it will be found that almost "fadeless" reception is experienced. This is due to the fact that when one station fades the other does not necessarily do so. The design of the arrangement should be carefully arranged and the coils and tuning condensers should be kept well apart. On the other hand grid leads should be as short as possible, while they should also be kept well away from the plate leads. A loose-coupled aerial may be employed plate leads. A loose-coupled aerial may be employed but in my experiments I found that the insertion of a .00005 mf. condenser in each aerial circuit was a better method of coupling the aerial. If the listener so desires he may construct the arrangement to operate from the electric-light lines and although more care has to be taken with the wiring and placing of components the final results are generally better than if a battery set of this type is employed. Of course, in the A.C. model, indirectly-heated tubes should be employed throughout and the filament current should be regulated to be exact. If this is not done hum may
result. Although the circuit of this set may lead the reader to conclude that it is a "stunt" receiver I assure them that although it may be "stuntish" in appearance, it does give results, which prove that it is well worth constructing. If the listener so desires he may con- ## Improving the S-W Converter (Continued from page 24) as it saves one tube, an important consid- as it saves one tupe, an important consideration in these days. In Fig. 1 is a circuit of a short wave converter which will greatly improve operation over that obtained from the use of a single tuned circuit preceding the detector grid. detector grid. The coils L1, L2 and L3 are those used regularly and will not require any charges. Coil L must have the same number of turns of the same size wire as L1, also the form should be of the same diameter. The spacing between L and L1 will be between the limits of 1" and 1-½". The method of feeding energy from the oscillator has been used by a prominent set manufacturer and many experimenters; it has proven very satisfactory. it has proven very satisfactory. Figure 2 shows the detector circuit using a 58 R.F. pentode instead of a '35. This tube results in greatly increased sensitivity. The bias resistor has a value of 1000 characteristics. ### "HAM" ADS Advertisements in this section are inserted at 5c per word to strictly amateurs, or 10e a word (8 words to the line) to manufacturers or dealers for each Insertion. Name, initial and address each count as one word. Cash should accompany all "Ham" advertisements. Not less than 10 words are accepted. Advertising for the June issue should reach us not later than April 18. TRANSMITTER: 5-30 WATT, PHONE OR code operation, panel type, \$3.85. Power supply, 400 volts, 120 mils., \$3.85. Precision wave meter, \$2.25. Stamp brings photos. brings wave meter, \$2.25. Stamp brings photos. John Penn. 817 Overton, Newport, Ky. FOR SALE: PILOT A.C. SUPER-WASP. Write Oscar Neth, 2901 Poplar Street, Erie, FINISHED CRYSTALS AND BLANKS. Bellefonte Radio Engineering Lab., Bellefonte, Penna. SHORT WAVE CONSTRUCTION KITS, SETS Supplies. Wholesale Catalog 5c. Federal Radio & Telegraph Co., 4224 Clifford Road, Cincinnati, Ohio. DIZZY CARTOON FOR QSL OR SHACK. Send \$2 with your rough idea for large orig-inal pen drawing. W1AFQ, Harwich, Mass. QSLS, SWLS 75c A HUNDRED, 2 COLORS. W9DGH, 1816 Fifth Ave., North, Minneapolis, SW RECEIVERS BUILT TO ORDER. SEND specifications for estimate. Pilot "Universal" Super-Wasp \$25, or trade. V. Narvydas, 542 Lorimer Street, Brooklyn, N. Y. TRANSFORMERS AND COILS REWOUND or made to order. Transformer laminations for the experimenter. Inclose 3c for prices and data sheets. Pembleton Laboratories, 921 Parkview, Fort Wayne, Indiana. HAMMARLUND PRO SHORT WAVE REceiver, 1933 model, with tubes. Will consider reasonable offer. Charles Dimino, 2310 East 24th Street, Brooklyn, N.Y. TRANSFORMERS, CHOKES. REWOUND OR built to order. New low prices. Boston Transformer Co., 886 Main Street, Cambridge, Mass. .001, 25c. .0005, 50c. DURAL 36 IN. Quartz crystals your frequency \$1.00 with holder. 203As, 212Ds, 211Ds, 852s cheap. Buy, sell, trade anything. W9ER, Timken, Kansas. Kansas. U. S. NAVY DYNAMOTORS—IDEAL HIGH voltage supply operating from storage batteries. General Electric 24/1500 volt, 350 watt \$37.50: 24/750 volt, 150 watt \$25. On 12 volt deliver 375. Westinghouse 27½/350 80 mills \$10. Mounted twins \$15. 500 cycle 500 watt \$7.50. All ball bearings. Harry Kienzle, 501 East 84th Street, New York. 1-\$18.00 CROSSMAN AIR GUN, \$7.50. \$75.00 Victoreen B.C. Superheterodyne, 5 volt D. C. model, 8 tubes, for \$15.00, includes Weston meter. 1—National B.C. Screen Grid Tuner (110 v. A.C.) and Thordarson Power pack. 8 tubes, make offer. 1—6 foot R.A.C. Victor Exponential Horn with electric pick-up, make offer. Satisfaction guaranteed. Dataprint Company, Ramsey, N. J. TRANSFORMERS, BILLY, OR BRYGALES. TRANSFORMERS BUILT OR REWOUND. TRANSFORMERS BUILT OR REWOUND. Send specifications. Four 4 prong coils for .00014 condenser \$1.25. Send 25c (coin) for new crystal detector Short Wave receiver blue-print. Big DX getter. Super Engineering, 1313—40th Street, Brooklyn. N. Y. STOP WORRYING! LET US ANSWER your problems: Antennas, Dynatrons, Transmitters. Receivers, anything you like built to order at reasonable cost. Write! Cherryhomes Radio Service, Jacksboro, Texas. Ten years experience. SELL D C PILOT SUPER WASP \$18, 8 tube band spread receiver \$10, 1750 fone Xmitter \$35, 80 meter C W Xmitter \$20, M O P A Push pull Xmitter tubes, coils for 3 bands \$25. R C A 250 Power Amplifier. W9JAJ Bellevue, Iowa, Route 4. JUST OUT! HOTTEST DX 2-TUBE SW Circuit. Blueprint 25c coin, 4 special 11-280 coils \$1.25. Modern Radiolabs, 1508 23rd Ave., Oakland, Calif. LICENSED HAMS! FREE HEADSETS, crystals, insulators, sockets, chokes, call letter plates, callbooks, ARRL handbooks, with subscriptions. Sample copy and dope 15c; foreign 20c. "R/9", Box 666, Hollywood. ## **Building a Depression Transmitter** (Continued from page 29) You should be able to secure an old "B" eliminator with a blown filter condenser for not more than One Dollar, and this price should include a serviceable Raytheon rectishould include a serviceable Raytheon rectifier tube. The next purchase should be a battery-charger, less rectifier, which can be had for around fifty cents. Care should be taken that the transformer is not of the auto-former type with the secondary and recommendate the secondary and continuous coil. The primary being one continuous coil. The transformer should be of the two-coil var- The first step is to entirely dismantle the eliminator. I mean to remove the transformer, chokes, resistors, socket, and switches, and to remove the condensers from switches, and to remove the condensers from their casing of pitch. Next separate the sheep from the goats in these condensers by testing each of them in series with a lamp across the lighting voltage. I need scarcely say that if the lamp burns, the condenser should be discarded. Now I have not mentioned it before, but if it is at all possible, I suggest that you try and secure an old Majestic. Assuming that you do have a Majestic, Assuming that you do have a Majestic, pick up the transformer and look at it. You will see that there are two sets of three soldering tugs running across the open soldering lugs running across the open face. One set of three represents the secondary winding together with the centertap, and the other set is the tapped primary. A pair of earphones in series with a battery will serve the purpose of determining which is which; for when the current is passed through the primary, the click is much louder than when it is sent through the high-resistance secondary. Now place the transformer on the table before you with secondary terminals on your right. The top of the left hand terminals is now The top of the left hand terminals is now one end of the primary, the bottom one is the other end, and the middle terminal is a tap that is taken off a few turns from the end represented by the bottom terminal. end represented by the bottom terminal. Mount this transformer at the rear left hand corner of a 10"x14" board by means of a tin strap going over the top. Mount one of the chokes in the center rear section of the board. Put the tube socket next to the transformer. Put one of the variable resistors and two binding posts on a piece of bakelite at the right end of the board, and mount the single pole switch that is and mount the single pole switch that is marked "High" and "Low" on a piece of bakeite on the front edge. A simple toggle switch should be mounted on this same piece of bakelite. ### Condenser Details Now, by placing two of the 1 mf. con-densers in parallel, make up two condenser- WIBTE PLUG-IN COILS ON TALL NAwibte Plug-in Colls on Tall NA-Ald four prong forms wound special for your set four for \$1.00. Five and six prong coils wound special. All size condensers also. Post-age free anywhere in United States. 3 cent stamp hrings free answers to your short wave troubles. I. Hall, Brockton, Mass. POSTCARD BRINGS FREE CATALOGUE describing the new "Explorer" low-priced Short Wave kits and receivers. One tube kit—\$4.25; two tube—\$5.50; three tube—\$7.50. Rim Radio Mfg. Co., 691 Grand Street, Brooklyn, N. Y. PLUG-IN COILS. SET OF FOUR WOUND on bakelite four prong forms, tune with .0001 condenser. 75c per set. Tuning dials 2 inch 15c—3 inch 20c. Tube bases 5c. Variable condensers 50c. Noel, 419 Mulberry, Scranton, Penna. SHORT WAVE LISTENERS CARDS: JUST what you need for reporting the stations you hear. Write for free samples today. WIEBF, 16 Stockbridge Ave., Lowell, Mass. POWER PACKS, 450 VOLTS. 150 MILLS pure DC \$6.00, 600 Volts 170 mill \$12.00, Filter chokes all sizes. transformers, transmitting condensers, amplifiers, condensers and B units. SW AC receivers complete pentode output with power supply \$12.50, also steel chassis aluminum finish \$2.50. Complete amateur station, receiver and transmitter \$15.00 up, request catalog. General Engineering, Charlotte, Mich. sections of 2 mf. each. One of these should be mounted on each side of the choke. A glance at the diagram should now enable you to wire up the entire power-supply. The high voltage leads on the transformer The high voltage leads on the transformer go to the filament connections on the socket, and the positive high voltage lead comes from the plate prong. The bleeder consists of the fixed bleeder that was in the eliminator together with one of the variable resistors in series. The bleeder current should be about one-fifth or one-fourth of the plate current drawn by the tube. I suggest that a Flashlight bulb be placed I suggest that a riasning the bull be placed in the negative lead between the center tap of the transformer and the first condenser. In the event that a condenser goes out, this protects the transformer and the rectifier from overloading. In
wiring up the tap switch, it should be remembered that the greater the number of turns that there are on the primary, the lower will be there are on the primary, the lower will be the output voltage. The two small condensers that are found in the condenser-section are buffer condensers, and they should be placed from the center-tap to each high-voltage end of the transformer. ## Checking Transformer Before you remove the secondary winding from the charger transformer, have the voltage tested. Very probably the man from whom you purchase it will perform this service for you. As you remove the turns of the secondary, count them; and then divide the number of turns by the voltage that was across the output. This will give you the turns-per-volt ratio of the transformer. Multiply this number by five, and you will have the number of turns that are necessary on the new winding. It is a good idea to add a couple of turns to take care of the drop that will occur when a load is placed on the transformer. If Before you remove the secondary windtake tare of the drop that will occur when a load is placed on the transformer. If the winding cannot all be made in one layer, a layer of oiled paper may be placed between the first and second layers. After the secondary has been wound and tested under a quarter-ampere load, the entire winding should be targed. winding should be taped. Now you have the three essential parts of your transmitter, and you are almost ready to go on the air. For an antenna, a wire about 66 feet long including the leadin should be used. Care should be taken that a very good ground is used. The transmitter is tuned to the band, and then the antenna is tuned to resonance. This resonance is indicated by the flashlight bulb in the antenna circuit. If the antenna can not be brought into resonance when the transmitter is in the band, different lengths should be tried. I may say, however, that the exact length is not critical. ## Remarkable Range of This Transmitter Now a word as to the results that may be expected from this "rig." Using a 112A tube and permitting it to draw 35 ma. at 170 volts, I have worked all of the United States districts except W6 and W7. I have received R7 reports from all of these except the fifth and the report from that was R6. QSA 4-5 reports have been received from all of these, and I have just received a QSL from Rainy River, Ontario, Canada, in which my PDC sigs were QSA5 R8 through the heavy Saturday evening QRM. I work the East Coast almost nightly, so I know that these performances are not of the kind that are known as "freak." Although I have not had my transmitting license for a year, I have 560 QSO's to my credit and have run regular traffic schedules with hams in adjoining states. I have received many compliments regarding my signals, and receive XTAL PDC reports about 50% of the time. I do not mean to boast about the performance of this transmitter, for I can take no share of the credit for its work. The circuit is an old one, but I believe that it is the best of all for "low-power." \$2.50 ## New 1933 "Beginner's Twin" = Battery Operated Short Wave Receiver Designed by a famous Short Wave Engineer. Every part in this kit is guaranteed perfect quality. Panel and base are drilled for quick assembly of the "TWIN" in a few hours. By carefully following instructions and blueprints you will have built a receiver that will not only brink in U. S. and foreign broadcasts, but also police calls, airplane signals, ship-to-shore calls and amateurs. But this is not surprising, for this latest 1933 sensation incorporates all the worthwhile features—new 230 2-volt tubes. Powertest coils covering 15 to 200 meters. Hammarlund super-sensitive tuning condenser. beautiful new Hammarlund drum dial for vernier tuning . high quality audio transformer for volume. smooth control regeneration with Hammarlund condenser. filament shootstats to control tube sensitivity. Kit of parts (including coils and \$7.95 tubes) As advertised in the New York "Sun" cells) Wired, with tubes \$9.95 Set of batteries (including 2-45 volt "B" batteries and 2-dry cells) Note the exclusive features in Powertone receivers: HAMMARLUND tuning condenser . . . four POWERTEST plug-in coils covering wave lengths from 15 to 200 meters . . . complete shlelding to reduce dielectric losses to a minimum and insure maximum and uniform efficiency under all conditions . . . R. M. A. color-coded metalized resistors . . FULL-VISION vernier tuning dial . . . A. C. Models use special filterizing system to minimize A. C. hum. 2-tube Battery Operated—A peach of a set for the "bekinner." Uses 1-230 and 1-233 tubes. Wheel, with tubes and coils, \$9.95 Kit of parts with tubes. 7.95 Set of batteries. 2.75 3-tube A.C. — Uses 156 triode, 57 triple grid and 50 type to the service of s kit of Parts with tubes and OCTO form coils. 16.95 Write For Free Catalog PRIME A. C. PHONOGRAPH MOTORS, 78 R.P.M.....\$5.95 A.C. MODULATED OSCILLATOR frequencies calibrated are 115, 130, 172.5, 200, 400 and 450 K.C.: With 50 tube. 12" ALUMINUM RECORD .00014 MIDGET CONDENSER (Variable) BRUNO CONDENSER MICRO-PHONE HEAD KIT, complete with instructions for assembly... 2.98 DEPENDABLE TUBE CHECKER 13.50 SET OF 3 RADIO FREQUENCY COILS (shielded) includes one antenna and two R.F. coils. Per set. 95c POWERTEST SHIELDED R.F. CHOKES, 85 millibeary ALUMINUM PANELS 7 x 10" 32c 7 x 18" 7 x 12" 35c 7 x 21" 7 x 14" 51c 7 x 24" 7 x 16" 61c BEEDE 0-1 Milliammeter, 31/4" BALDWIN Type "C" Hendphones. 2.75 KURZ-KASCH 3" and 4" Vernier Mail orders to Dept. S-5 85 Cortlandt St., N. Y. C. BRANCH STORES 178 Greenwich St. Near Dey St., 179 Greenwich St. Near Cortlandt St. All in N. Y. City ## TRY-MO Radio Co., Inc. ## An Inductive S-W Tuner (Continued from page 13) ### Parts All parts are shown on the diagram with their respective values. The coil unit is the same as that used in the Radiola III, except for turns as noted. This is also true of the .006 and .0001 mf. antenna condenser, which is a standard part of the aforementioned The antenna switch may be of any reliable make, but should be so constructed that there will be no open circuit when changing from one tap to another. Otherwise, when earphones are used a violent click, which is hard on the ears, will re- ### List of Parts for the 100 to 300 Meter Inductively Tuned Hood Receiver -tubes, 27, 24, and 47. -tubes, 27, 24, and 47. -wafer sockets, two 5-prong and one 6prong for 47 pentode; 1 output transformer 1:1 ratio, with high impedance primary to match pentode; Thordarson. -5-point switch, Eby (Best). -Vario-Coupler with two rotors of the type used in the Radiola III. 3:1 ratio A.F. transformer. -Grid leak, 3 megohms (Lynch). -Grid Condenser .00025 mf. -Fixed condenser .0006 mf. -.0001 mf. fixed condensers. 01 mf. fixed condenser. -0005 mf. condenser. -0005 mf. condenser. -5 mf. by-pass condensers. -3 mf. by-pass condenser. -1000 ohm resistor, 1 watt (providing cathode bias on 24 tube). Lynch. -300,000 ohm resistor. Lynch. megohm resistor. Lynch. 300 ohm resistor (grid bias for 47 1-75,000 ohm resistor, R1 (in series with 5 G. of 1st A.F. tube). 1-Center tap resistor, 50 ohms. 1-Center tap resistor, 30 ohms. -50,000 ohm potentiometer, Frost (Clarostat). 1-40,000 ohm resistor. 1-75,000 ohm resistor (forming voltage-divider supplying 250 v. "B" plus, feed, for three tubes. ## Come and Enlist in the S-W "Code" Army (Continued from page 30) pivot, upon which rests the fore and index fingertips, while the thumb lightly grips the under edge of the knob but also slightly to one side. Your elbow on the table serves as the other pivot for arm movement. With these two ideas clearly in mind, bend your arm at the wrist so that it is raised about two inches from the table, then let your arm "fall" to the table, then let your arm "fall" to the table, thus executing the "make" movement so that you will hear the audio note from the speaker. With the arm raised at the wrist, this is the "break" position and no sound comes from the speaker. Also adjust the contact-gap of the key so that when your hand does not rest on it, the compression spring of the key will keep the contact points slightly separated. This will eliminate hearing the key contact. Many operators would have better records, there would be less disturbance, and their signals could be "read" at greater distances if their method of keying were better. Hence you are adminished to de- distances if their method of keying were better. Hence you are admonished to develop the outstanding ethical habit which distinguishes the good operator—"a good fist on the air." ## Uses This code-learning set is useful for the whole family to learn the short-wave lan-guage, to teach each other the code, to try their hand at "transmitting," and to help each other, by constructive criticism, make more rapid progress, for it is a well-known fact that people improve only when under a system of observation. Furthermore, the partially deaf can enjoy short-wave reception because by means of the amplifier, the audio signal, if fed into headphones, gives entirely adequate volume. While the photograph shows the set using '01A's, '99's or '30's may be used with equally good results and with about the same degree of economy, for in actual operation, the filament of the oscillator tube V1 is turned very low, as this gives a good musical code-tone. If the filament is burned at rated voltage, the tone is is burned at rated voltage, the tone is "mushy" and if burned very, very low, the audio note generated goes beyond hearing. Thus the tone can be adjusted to the best reception frequency of the hearers. In conclusion, it may be said that such a set will be found useful in teaching code to school classes and for recruiting the whole family into short-wave service. ## A "Cash-Box" Receiver (Continued from page 24) Another good feature of the set is that in case one builds a transmitter or a larger receiver, the cash-box
set can be used as an ideal monitor or frequency meter. | | Coil | Data | |------------|-------------|---------| | Frequency | L2 | L3 | | 3,500 KC | 35 | 14 | | 7,000 KC | 16 | 11 | | 14,000 KC | 6 | 7 | | 28,000 KC | 3 | 5 | | L1-5 turns | around coil | socket. | of VALUABLE REFERENCES for HOME, OFFICE and SCHOOL Postage 11c per book, Postage FREE if 5 books are ordered, (Formerly \$1.50 to \$7.85) A Genuine Friend in Need! (Formerly \$6 in 4 vols.) Right at your finger-tips are instant answers to every question. Get the book! . . Look up in the Index! A had cold? Feel bad all over? Stomach upset? Feel tired, run down? Here you find out what's the matter, what to do in ordinary illness; how to treat until Doctor Rets there in serious cases, In half a nillion American homes this New Home Medical Adviser is a daily guide, counsellor and friend. It is kept handy beside atlas, dictionary, almanac, Bible and other references so everyone can quickly refer, read, learn, understand and KNOW. Sixteen medical specialists here in 1 handy book. The leading home medical authority for 25 years. Authentic, proven, newly revised and up-to-date on latest medical practice. ## How to Diagnose and Treat: How to Diagnose and Treat: Anemia, Heart Trouble, Diarrhea, Billiousness, Indigestion, Worms, Nervous Debility, Gout, Delirium Tremens, Nervous Debility, Gout, Delirium Collapse, Insanity, Apoplexy, Colds, Toothache, Diphtheria, Heat Stroke, Food Polsoning, Earache, Rheumatism, Lumbago, Stiff Neck, Hives, Itching, Rupture, Piles, Tumors, Typhold Fever, Maiarla, Smallbox, Vaccination, Eryshelas, "Pink Eye," Deafness, Earache, Measles, Ser Hygiene, Gonorrhea, Sybillis, Sexual Functions, Brisht's Diseaso, Puberty, Monstruation, Laucorrhea, Childbirth, Children's Diseases, Croup, Bowlegs, St. Vitus' Dance, Personal Hygiene, Skin, Halt, Teeth, Diet, Home Exercises, Rest, Weight and Height, Emergency Treatment for Burns, Fractures, Bites; Lightning Stroke, Sunstroke, Folsonis and All Aecidents. Lightning Stroke, Sunstroke, Polsons and All Accidents. I. NEW HOME MEDICAL ADVISER, 10 color, Full-bare body charts. Well bound gold stamped, size 5x7x1 1/2. Consistent in 1 landy vol. (Formerly in 4 vols., \$6.) 89c Our Bargain Price (postage 11c castra). Mary Pickford. 328 pages. 32 full-page portrait illustrations. (Formerly \$3.) Our Bargain 89c Price (postage 110 extra). 3. GRAPHOLOGY, or, Character Analysis to discover truth about friend or enemy if you have his signature. Easy to read, understand and apply. Valuable in business, love affairs, society. This book is the recognized authority. 200 pages, cloth bound. (Formerly \$3.) Our Bargain Price 89c (postage 11e extra). 4. THE SECRET OF GOLD, by Roblier, world-renowned writer and teacher of practical psychology. How to realize Money by easy psychology methods. Anyone can read, use, learn and benefit. (Formerly 7 vols. \$7.85.) Same text now in 1 vol. Bright red arteraft, handsomely embossed. Our Bargain Price (postage 11e 89c extra). 5. THE BOOK OF FATE. teller—found on his body at his death. from ancient Egyptian ms. Answers all questions about love, business, travel, money, the future, Well butted, 200 pages. (Formerly \$2.50.) Bargain Price (postage 11c extra). 89c 6. L'BLE JINGLE RHYMES. The great people and events of the Bible made real and personal to children. An enjoyable book for all, Pleasant way of teaching the Rible. 209 pages. Large Size. Illustrated. (Formerly \$2.00.) Our Bargain Price 89c (postage file extra). trated. (Formerly \$2.00.) Our Bargain Price 89c (postupe Ife extra). 7. FORTUNE TELLING. With Cards of the state s erico.) Both Books for. 8. COCKTAILS AND PUNCHES, by Charles of Delmonico's. 150 recipes. How to mix popular, rare, exquisite and delicate drinks. A drink for every purpose and mood. Favorite drinks of celebrities. (Formerly \$1.50.) gain Price (postage 11c extra). 9. MOTHER'S MANUAL. Liberally illustrated. Com-7. IN Our little of McCall Layette pattern, what to do before baby comes and after it arrives. Hygtene, weight charty, baby biography. (formerly \$3.50.) Our Bargain Price (postage 11e 89c 10. PERSONAL MAGNETISM. How to develop a personality that attracts money, love and the things you want. How to be popular. How to make people WANT you. So easy that anyone can understand and apply at once. (Form. \$2.) 89c Our Bargain Price (postage 11c extra). FREE BOOK WITH EVERY ORDER While our 236 copies last, we will include in your shipment without extra charge I copy of "The Winning Principle of Success" (value \$1.) Rush order to make sure of setting this free book, POSTAGE FREE if you order 5 books (\$4.45 worth.) Stock up NOW for season's entertainment and study. Mail this coupon TODAY! 7 8 9 3 4 5 6 Name City...... State... (POSTAGE FREE if 5 or more books are ordered. Otherwise include 11c per book postage with remittance.) ## FREE 13th ANNIVERSARY RADIO CATALOG 132 pages containing the most complete listing of radio items for the amateur and experimenter at real bargain prices. Send for your copy now! AMERICAN SALES COMPANY Wholesale Radio Distributors SW-44 W. 18th St., N. Y. C. The Oldest Amateur Supply House. Est. 1919 ## INFRA RED HEALTH LAMP (Floor Model with flexible shaft) Recommended by all health institutions and physicians all over the world. Save doctors' hills Save your health Save your family the trip to the doctor who charges \$5.00 per treatment. List Price \$25.00 Your Cost . . . \$9.75 One sale in a neighborhood sells 5 more Send for circular with full details, Gold Shield Products Co. 112 Chambers St. (S. W.) New York ## "Ham" advertisements are always interesting and profitable to read. See Page 50 ## A 3-Tube "Stand-by" From a Radiola V (Continued from page 21) Haas on page 497 of the December, 1932, issue of SHORT WAVE CRAFT. The tuning condenser is a standard .0001 mf of Hammarlund's make. A regular quarter inch steel lock washer on its shaft prevents the condenser from "creeping" when turned quickly against its stops. I use a Kurz Kasch 3" vernier on this condenser, and by offsetting the dial slightly from the panel, by means of washers on the mounting screws, prevented any tendency to back-lash. to back-lash. This condenser was mounted in the old upper rheostat hole, thus placing the vernier knob at the exact center of the panel. See Figs. 1, 2, 3. ### Grid Condenser and Leak Grid Condenser and Leak The grid condenser and leak, respectively .0001 mf. and 2 megohms, are soldered directly to a small battery clip, and thus attached to the grid cap of the detector tube. The .00005 mf. regeneration condenser was mounted directly in the hole of the old right hand rheostat. It carries one of those old large knob and pointers which were so common, and are very well adapted for minute but comfortable tuning. The regeneration control, a 50,000 ohm Clarostat, with a similar knob, is mounted in the left hand rheostat hole. The .5 mf. suppressing condenser fits snugly between the coil end of the tube shelf and the side of the cabinet, with the mounting lugs slipped around the screws supporting the tube shelf brackets. The upper left hand knob is for the 50,000 ohm volume control, while the corresponding right hand knob is on the detector rheostat. Both of the latter are luxuries, of course, and are unessential. However, the volume control permits adjustment of that third tube for ear-phone reception when desired, while the single rheostat permits adjustment to the source of current, both desirable. Should a band-spreading condenser be desired it may be mounted in place of the volume control placed where the rheostat now is. If none of the last three instruments is used, no drilling of the panel is necessary. The 60 henry radio frequency choke, a necessary necessary. The 60 henry radio frequency choke, a Pilot, is mounted one inch behind the binding post strip and four inches from the coil end of the set, i. e., the left end, viewed from the rear. The writer drilled one hole here in the soft zinc base, but it is not absolutely necessary. The battery switch mounts readily with a large metal or bakelite washer in the center hole near the base, from which the center jack was removed. Hook-up the set as far as possible before inserting the tube shelf. Neither is this absolutely necessary, but it will simplify that work somewhat. The writer used No. 18 bell wire, covered with black spaghetti. Now mount your coil and tube sockets on the tube shelf, all at its rear edge to place them on the center line. tube sockets on the tube shelf, all at its rear edge to place them on the center line of the set. The detector socket is placed at the center of the shelf (the long way), the second amplifier socket is placed at the extreme right end of the shelf, and the first amplifier socket exactly between its mates. The coil socket is placed exactly in the middle of the space between the detector and the left end of the cabinet as viewed from the rear. Note that for all your resulting compactness, no metal lies in the field of the coil! Finish your wiring and hook on your batteries. Now let's review the physical and operating characteristics of our "Luxuriant Mongrei": ### Features - . A set weighing 151/2 lbs. that will take punishment. - 2. A properly designed 3-tuber with a base only 51/2"x11". 3. A genuine commercial appearance, with an extra matching cabinet for supplementary use, all heavily shielded. 4. A consistent "DX" logger, and loud speaker operation. 5. A 2-control tuner, with supplementary controls to "squeeze the utmost" from a signal. A set with "one-hand," split-second, coil-changing facilities. The following parts were necessary: -1-.0001 mf. grid condenser. C1-2-11/2" square brass angles. C2-1-.0001 mf. Hammarlund variable condenser. C3-1-.00005 or .0001 mf. Hammarlund variable condenser. C4-1-1/2 to 2 mf. fixed condenser, one from a Ford spark coil will do-but test it. C5-2-.01 mf. condensers. G-3-2 megohm grid leaks.
L1 & L2-Na-ald coil kit. CH-1-60 henry pilot R.F. choke. R2-1-50,000 ohm Clarostat. 1-3" Kurz Kasch vernier dial, matching knobs, etc. The following are desirable: R1-1-20 ohm rheostat. R3-1-Clarostat volume control. Sw-1-filament switch. If preferred, the first audio stage may readily be changed to the regular transformer coupling, or the insertion of a third transformer will permit a stage of transformer-coupled, followed by a stage of double impedance coupling. In the last case the secondary of the third transformer is substituted for the third grid leak. Obviously the set is as elastic in design and construction as it is in operadesign and construction as it is in opera- ### Refinements and Coil Data COILS: Forms, standard 11/4", Na-ald, Genwin, etc. | Meter | a Turns | Spacing | Antenna
Tickler
Separa- | Tickler, | |--|-------------------------|---|--|---| | Blue 10-30
Yellow 20-50
Green 40-90
Red 80-18
*Ail No. 22 er | 7 @
0 15 @
0 30 @ | 7 turns/inch
15 turns/inch
24 turns/inch
close wound | tion
1/8"
1/8
1/8"
†1/16"
†No. 22 | * 8 turns * 7 turns *11 turns \$15 turns \$10, 28 | VOLUME CONTROL: A standard universal Clarostat or Pilot Resistograd on the upper left is shunted across the last RHEOSTAT: A six to twenty ohm rheostat on the upper right handles the filament supply. BAND SPREADER: A pilot .00001 mf. variable condenser shunted across the main tuning condenser is on the lower left. Broadcasting stations are logged directly on the main condenser with the band spreader kept at 50. In the "ham" bands C.W. signals are logged on the band spreader with the main condenser set in the middle of the band. REGENERATION: The 50,000 ohm Clarostat in the control grid lead is moved over directly under the vernier dial of the main condenser. main condenser. AMPLIFIER: The first stage has been converted to double impedance, the last stage to low ratio straight transformer coupling. Two Kelford 100 henry chokes have been substituted for the R.C.A. U.V. 712 audios, and a General Radio 2.7 to 1 transformer inserted for the last stage. These happened to be handy and the RCA's brought a good supply of other parts in a swap! Of course the two RCA secondaries work as well in the double impedance arrangement. Incidentally the latter arrangement gives somewhat more power and clarity than the two-stage single impedance. gle impedance. TUBES: A 32 detector, next to coil; a 30 first stage in the middle; and a 231 for output, over which I found a shield-can worthwhile. ## SHORT WAVE PARTS We stock a COMPLETE line of NATIONALLY known Radio Parts for AMATEURS and SERVICEMEN. ## Readrite Meters-Panel Type D. C. Milliammeters 0-10....\$1.03; 0-15, 0-25, 0-50, 0-100, 0-150, 0-200, 0-300, and 0-400.....each \$0.58 0-200, 0-300, and 0-400.....each \$0.58 0-20/100 and 0-15/150.....each 1.03 0-1, 0-3, 0-5, 0-6, 0-8, 0-10, 0-15, 0-25, 0-50. each \$0.58 Beede 3½ inch D.C. Millammeters Black enameled case, Well-damped D'Arsonval type, perfectly balanced in all positions. sapphire bearings, Accuracy guaranteed within 2%, zero adjustable. 0-1 and 0-3 m.a........each \$4.12 Ranges 0-5 to 0-1000 m.a........each 3.25 ## **Enameled Copper Antenna Wire** Gauge 100 ft. 200 ft. 300 ft 10 \$0.75 \$1.50 \$2.25 12 4 88 1.32 14 .28 \$6.36 Enameled Copper Antenna Wire—100 feet, \$1.10 FB-7 Armateur type short wave Superhet receivers in atock—write for our low price. SPECIAL LOW PRICES on COPPER TUBINGS—All Nizaea. ## Condensers Isolantite Insulation Rounded Plate Edges-6500 V. Rating **Hammarlund Transmitting** \$ 5.59 7.94 10.58\$2.94 100 mmf. 150 mmf. Rounded Plate Edges — 3000 V. Rating mmf. \$3.24 225 mmf. \$4.70 . \$3.24 . 3.81 00 mmf..... 5**0 mmf**..... **Hammarlund Midget Condensers** 20 mmf. \$0.88 35 mmf . .88 50 mmf . 1.06 80 mmf . 1.18 100 mmf . 1.35 140 mmf. 200 mmf. 260 mmf. 320 mmf. \$1.47 1.64 1.77 80 mmf. Hammarlund Dual Midget Condensers Short Wave Compact Variable Condensers—with trimmers .000365 mfd. capacity \$0.65 gang Hammarlund Comet "PRO" latest 1933 models in stock -write for prices. The "Home of a Million Radio Parts." Write for latest Free bulletin. Foreign orders solicited. 20% Deposit with each order—You pay postage. We ship any size order to any part of the world. MAURICE SCHWARTZ & SON 710-712 Broadway Schenectady, N. Y. ## NEW WHOLESALE LECTRICAL & RADIO * CATALOGUE * ROYAL-EASTERN ELECTRICAL SUPPLY CO. ... 16-18 WEST 22 5T. ... · NEW YORK - N.Y. ## LENSES -.81" for TELEVISION PROJECTORS †3" diameter lenses, each 12c 18", 60 line lens scanning disc \$25.00 Write for Free Lens Disc Data These lenses are ideal for mounting in lens-scanning discs. They exhibit a minimum of aberration and reproduce the crater lamp aperture faithfully on the screen thru a wide angle. Send money order, cash, or eheck to TELEVISION OPTICAL EQUIPMENT COMPANY 476 Broadway, New York City ## BRING IN NEW and DISTANT Stations with this AMERICAN ALL DIRECTION ANTENNA Coast to coast reception is possible. Gives clearer and louder reception. Gets greater distance and volume. Made of copper. Neat and durable. Easily and quickly installed. Guaranteed. PRICE NOW \$1.00 SHIPPED PREPAID. AMERICAN RADIO HARDWARE CO. 135 Grand Street, New York, N. Y. Study the Advertisements in this magazine and take advantage of the wonderful values offered. ## an old timer says- San Francisco, Calif. Gentlemen: Allow me to congratulate you on Myron F. Eddy's "How to Become an Amateur Radio Operator." I have been a "ham" since 1909 and have worked up from the open crashing sparks of "Old Betsy's" and took sullenly to these new fangled gadgets and had to park "Betsy" in the junk heap under the eaves to go in for tubes. I'm too old now to dabble in the game very much but in my teaching a bunch of ether disturbing young squirts here—all Boy Scouts, I still get a certain "kick" out of it. I purchased nine copies for my gang and I suppose five or six others got them because they saw ours—had to send to Oakland for three additional copies. They're GREAT! One of the "Old Men" of Radio Ex. Lieut. Al. A. Weber (Retired) 1153 Capp St., San Francisco, Calif. K TO SERVE How to Become u.S. Government License SHORT WAYE NEW YORK 98 PARK PLACE CRAFT EACH HOW TO BUILD OPERATE RECEIVERS B PARK PLAN Address THERE is not a radio man in the field, experimenter, service man or dealer who will not want to read these two books. Right up to the minute with outstanding developments in short-wave radio—new methods and apparatus for quickly learning how to become a practical radio operator. Each book is authoritative, completely illustrated and not too highly technical. The text is easily and quickly grasped. How to Become an Amateur Radio Operator We chose Lieut. Myron F. Eddy to write this book because his long years of experience in the amateur field have made him pre-eminent in this line. For many years he was instructor of radio telegraphy at the R.C.A. Institute. He is a member of the I.R.E. (Institute of Radio Engineers), also the Veteran Wireless Operators' Association. If you intend to become a licensed code operator, if you wish to take up phone work eventually, if you wish to prepare yourself for this important subject—this is the book you must get. Partial List of Contents For this important subject—this is the book you must get. Partial List of Contents Ways of learning the code. A system of sending and receiving with necessary drill words is supplied so that you may work with approved methods. Concise, authoritative definitions of radio terms, units and laws, brief descriptions of commonly used pieces of radio equipment. This chapter gives the working terminology of the radio operator. Graphic symbols are used to indicate the various parts of radio circuits. General radio theory particularly as it applies to the beginner. The electron theory is briefly given, then waves—their creation, propagation and reception. Fundamental laws of electric circuits, particularly those used in radio are explained next and typical basic circuits are analyzed. Descriptions of modern receivers that are being used with success by amateurs. You are told how to build and operate these sets. Amateur transmitters. Diagrams with specifications are furnished so construction is made easy. Power equipment that may be used with transmitters and receivers, rectifiers, filters, batteries, etc. Regulations that apply to amateur operators. Appendix, which contains the International "Q" signals, conversion tables for reference purposes, etc. How to Build and Operate Short Wave Receivers Burposes, etc. How to Build and Operate Short Wave Receivers is the best and most up-to-date book on the subject. It is edited and prepared by the editors of SHORT WAVE CRAFT, and contains a wealth of material on the building and operation, not only of typical short-wave receivers, but short-wave converters as well. Dozens of short-wave sets are found in this book, which contains hundreds of illustrations; actual photographs of sets built, hookups and diagrams galore. The book comes with a heavy colored cover, and is printed throughout on first-class paper. No expense has been spared to make this the outstanding volume of its kind. The book measures 7½x10 inches. This book is sold only at such a ridiculously low price because it is our aim to put this valuable work into the hands of every short-wave enthusiast. wave enthusiast. We know that if you are at all interested in short waves you will not wish to do without this book. It is a most important and timely new radio publication. ## Over 150 Illustrations in Each Book 7x10 Inches 72 Pages Heavy Colored Covers Not Sold on Newsstands ## SHORT WAVE CRAFT 96-98 Park Place, New York, N. Y. ## **Building a
2-Tube** Oscillodyne (Continued from page 15) panel is attached. The subpanel is attached to the front panel by a pair of I" x 4%" brackets, which are cut to the latter dimension from a stock length of The 50,000 ohm Electrad potentiometer The 50,000 ohm Electrad potentiometer is used to vary the voltage applied to the plate of the type 56 tube, used as a detector. If a potentiometer of another make is used, make sure that the shaft and the bearing are insulated from the slider; otherwise the part must first be mounted to a strip of bakelite which in turn is mounted to the panel. The antenna and ground connections are made at one side by means of Eby Twin binding posts. The loud speaker connections are made on the other side by means of an Eby Twin jack assembly. The battery connections are made by a binding post strip at the rear. The Hammerlund antenna compensating condenser is mounted to the top of the inductance coil and bent horizontal to facilitate adjustment, as shown in the photographs. The Aerovox by-pass and fixed condensers are mounted to the bottom of the subpanel, as is also the Hammarlund choke. ### Coil Construction The tapped inductance coil is wound on The tapped inductance coil is wound on a bakelite form 1" in diameter and 2" long. No. 35 D. S. C. wire is employed and there is no spacing between turns. The windings are separated by one-eighth of an inch. The winding procedure is as follows: Start the grid winding from the inside and wind outward, tapping the coil at 5, 8, 12, and 20 turns while winding. This winding should have a total of 33 turns. and 20 turns while winding. This winding should have a total of 33 turns. A convenient method of making the taps is to wind about one-quarter of a turn less wire than required and make about a four inch loop which is knotted so that the knot appears in the proper place when wound on the form. One wire of the loop is then cut about one-half inch from the knot leaving one long lead and one short lead. The long lead is used to make connections to the inductance switch; while the short lead is scraped bare and wrapped around the base of the long lead, which is bared for this purpose. The joint, thus made, is soldered and covered with a 1½" length of "spaghetti" tubing. When the first winding is finished, the tickler winding is started from the inside and wound in the same direction as the preceding. This means that the two windings would appear like a continuous winding if joined in the center. This winding is tapped at 8 and 11 turns and has a total of 15 turns. The finished coil may be given a light coat of clear Duco or airplane dope, if desired. The coil is now mounted to the top of the subpanel and wired to the Yaxley inductance switch, as shown in Fig. 2. ### Operating Notes The operation of this set is practically the same as the one described last month except that a loud speaker is now used in except that a loud speaker is now used in place of earphones. One difficulty encountered in getting the set described to function properly was faulty switch contacts. This was presumably caused by rosin flowing down during the soldering operation. After cleaning the switch points this trouble disappeared. If the set does not operate correctly the trouble, in all probability, can be located by the "trouble-shooting" instructions given last month. by the "trouble given last month. The writer would be pleased to hear from constructors who have built this or the preceding set, in regard to results obtained or difficulties encountered, and will endeavor to answer all letters providing (Continued on page 56) ## The "Easy-Build" S-W Super-Regenerator (Continued from page 23) Details for Making Coils to Be Used in Super-Regenerator. (Alden type) tuning in signals with this set. Try the circuit as a straight regenerative receiver and then as a "super." Note that certain stations will come in with greater volume on the super circuit and that other stations will give better signals. stations will come in with greater volume on the super circuit and that other stations will give better signals on the straight regenerative hook-up. In general the super-regenerative circuit will give better results on the very high frequencies and the straight regenerative circuit will be more satisfactory on the lower frequency bands. C. W. signals and super-regeneration go well together and very high values of amplification can be built up. This great "build-up" of signal will result in the distortion of the original pitch of the signal, but this will not be objectionable. For 2-volt battery operation use the 32 type tube, for 6 volt operation use the 36 type tube and the 24 or 57 for operation on A.C. If a satisfactory filament transformer with a secondary voltage of 6 volts is available, then the 36 type tube can be used if desired. Be sure that the tubes are in good condition. Poor tubes will rain any short wave receiver. When using tubes of the 32 class do not place more than two volts across the filament or the life of the tube will be materially decreased. Keep the voltage at exactly TWO volts for maximum life. The plate voltage should be 135 and the screen voltage should be varied until the most sensitive and smoothest operating point is found. This voltage will vary with different types of tubes and tests should be conducted when tuning to a weak station to determine the proper operating screen This receiver offers the S.W. set builder his chance to test and compare the dif-ference between the efficiency of regen-eration and super-regeneration for short wave reception. It is necessary to keep in mind that there are several improvements mind that there are several improvements that can be made in the circuit for more refined operation as a super-regenerative circuit. Many of these possible improvements can be found in the article on super-regeneration as mentioned in the second paragraph of this article. Set builders who have looked at the many super circuits that have appeared in SHORT WAVE CRAFT in the past, and have hesitated to build them because they were doubtful as to the results, should try this one and then they will go after the more one and then they will go after the more complicated and smoother operating jobs. There is a great deal of fun in trying to make one tube do the work of two and some times more. ## A Pyrex Glass Lead-in for Ten Cents (Continued from page 25) vay until the tube will easily slide through way until the tube will easily slide through the glass. Repeat for the second cup. Cut two rubber gaskets from an old inner tube to fit under the cup edges, between cups and wall, also two smaller ones to go between cups and bolt heads. Cut a hole in the wall as large as possible, or a little less than the inside diameter of the cups. If the antenna is not to be carried through in one length, it is only necessary to obtain a long brass bolt, or threaded rod with nut at each end, or make up one by soldering a brass screw into each end of a five-sixteenth copper tube. To make a hollow bolt, so that the antenna wire of a five-sixteenth copper tube. To make a hollow bolt, so that the antenna wire or lead-in may be carried right through without joints, take a five-sixteenth brass screw, file threads from one end so that it will fit into a copper tube, drill the screw through, using drill a little larger than the lead-in wire used, then solder into end of tube. Cut the tube proper length, determined by the thickness of wall through which wire is run, flange the end over a heavy brass washer and solder. This saves the use of two threaded ends. When assembling, a few brads will hold the cups and gaskets in place until the bolt is dawn up. Should a larger insulating surface be desired, larger Pyrex bowls may be used, drilled in the same way, or holes for larger diameter bolts may be drilled about as easily as the smaller ones.—H. H. Parker. file threads from one end so that ## "GREAT!" ## Say Radio Builders GREAT-because Hammarlund has always built to a high standard of quality which never disappoints. There is more than thirty years of engineering experience back of the condensers, sockets, coil forms and transformers described in the Hammarlund Catalog "33". Mail Coupon for free A sensational new I. F. Transformer, tuned by AIR-di-electric, Isolantite-insulated condenselectric, Isolantiteinsulated condensers, which insure peak performance regardless of weather or atmospheric conditions. Regular equipment in the famous COMET "PRO" Short-Wave Receiver, and will greatly improve the selectivity and sensitivity of other superheterodynes. superheterodynes. ## ISOLANTITE SOCKETS and COIL FORMS have Sockets Isolantite base and perfect spring contacts, for 4, 5 and 6 prongs. Isolantite Coil Forms for Short and Ultra Short Waves. No drilling. 4, 5 and 6 prongs. Precision condensers of special de-sign for balancing, receiving, transmit-ting-covering both short-wave and broadcast bands. Quality of world-wide reputation. | HAMMARLUND MANUFACTURING CO., 424-438 W. 33rd St., New York, N. Y. Check here for General Catalog "33." Check here for "Air-Tuned" I. F. Transformer. Check here for booklet deserthing COMET "PRO | g. | |--|------| | Short-Wave Superheterodyne. | gar. | | Address SW- | | QUALITY APPARATUS FOR ## Short Waves POLICE AND SHORT WAVE ADAPTER Convert your broadeast set into a shortwave set tuning from 80 to 200 meters. so little money. Intakaled In a lifts, receiver, You can easily convert the celevation of the money into the detector the model, specify the detector tabe needs. Specify the detector tabe needs, specify the detector tabe needs, specify the detector tabe needs. Specify the detector tabe needs, specify the detector tabe needs, specify the needs of need
GENERAL WINDING COMPANY 214 FULTON ST. NEW YORK, N. Y. ## ALDEN S.W. COILS Precision wound coils with the coring for enay insertion and rem Set of four precision wound short-wave coils— 20 to 200 meters with 0,00014 mfd. condenser. 704SWS Lint Price \$2.00 set 704SWW and 704SWO. List Price Genuine Makalot Coil Forms with color-coded easy-grip ring. 1M in. din. x 2 in. winding space. Red. Yellow, Green or Blue. 704—4-pin coil form. List. .25c 705—5-pin coil form. List. .25c 706—6-pin coil form. List. .30c Alden Code Set Adjustable pitch buszerhighly polished nickel plated metal parts. Code molded in beautiful black Markhot base. Resulstion was knob. 3 binding posts for connecting phones or using in two-way operation. Boxed with lustrated directions. Code Set. List Price. Send 10c for 40-page Adapter Data Booklet—over 300 diagrams with directions, tube connections, analyzer rewiring instructions, etc. See page 57. ALDEN PRODUCTS CO. NA-ALD Dept. SWS BROCKTON, MASS. ## EXTRA SPECIAL SAMSON SUPPLY COMPONENTS When You Buy ALAN Short Wave Receiver, You Get qualted Flexibility ease of control tabu Sensitivity Background ir-Smooth Oscilir-Smooth per-Smooth Oscilor On Control throughout on Control throughout on 2-B Battery Set requiring typo 32 Multi-mu tube and ne 33 Pemtode. Special S B Battery Set using a type 345 and 1 type 33. 4-B Deluxe, using 2 type 345, one type 30 tube and one Pe 30. Price Company ALAN RADIO CORP. 835. Cortiandist. N.Y. ## Building a 2-Tube Oscillodyne (Continued from page 54) a self-addressed and stamped envelope is (Part III of "Oscillodyne" series to appear in June issue.) List of Parts Required for Two Tube Oscillodyne C1—Hammarlund equalizing condenser, EC-35. (3-35 mmf.) C2—Hammarlund midget condenser, midline plates, 80 mmf. capacity, type MC-75-M. (Cardwell Midway, 100 mmf. type C, plates, 404-C.) C3—Aerovox Type 1460, .00015 mf. mica condenser. condenser. C4-Aerovox Type 1460, .002 mf. mica C5—Aerovox Type 1460, .004 mf. mica condenser. C6—Aerovox Type 261 filter condenser— single section 1. mf. 300 volt D.C. working voltage. 7—Aerovox Type 261 Filter Condenser double section .5.5 mf., 200 volt D.C. working voltage. 1—Bakelite Tubing 1" diameter x 2" long (Wholesale Radio Service Co., Inc.). See text for winding details. L1L2-Hammarlund Isolantite R.F. choke- type CH-8, 8 millihenrys. 3—Stromberg-Carlson A.F. transformer, No. 3-A (secondary winding only used). 1—Aerovox Type 1095 Resistor, 2 megohnis. -Aerovox Type 1095 Resistor, 100,000 ohms R3—Electrad Type RI-205, 50,000 ohm vol-ume control (potentiometer). R4—Aerovox Type 1095 Resistor, .5 meg- ohms. R5—Electrad Type GB Flexible Resistor 500 ohms, 2 watt rating. R6—Yaxley center-tapped resistor, 20 ohms. 1—Yaxley No. 1625 two gang-5 point tap switch. -Eby Iwin binding post assembly. -Eby Twin jack assembly. -Eby binding post. -Hammarlund Isolantite 5 prong sockets, Type S-5. Vernier Dial (National) 5", with 1—Vernier Dial (National) variable ratio. 2—1"x8½" brackets. 1—Aluminum panel 6"x9". 1—Aluminum panel 4½"x8½". Miscellaneous nuts, bolts, wire, etc. ## **Short Wave League** (Continued from page 41) ## Yes! Yes! The Code! Yes! Yes! The Code! Editor, Short Wave Craft: I would like to clout the guy who says code is useless to the "ham." How did radio begin? With a five meter fone set? I guess not! In the old days they experimented with code and code alone and still some bright "lid" claims code is useless! Those are the birds that should not be given a license at all even after they see that it is useless to try to engineer one without passing a code test. I am for the Short Wave League and all "hams" who use code or a combination of code and fone. Bar the codeless "wouldbe-hams" from the air; send 'em to China or some place where they can talk through or some place where they can talk through a "mike." Respectfully, S. M. WILSON, W5BSC, Pascagoula, Miss. ## What! No Code? What! No Code? Editor, Short Wave Craft: Just what is all this "ballyhoo" regarding a "codeless phone license"? Personally, I don't believe the F. R. C. will ever consent to such a change in their already ridiculously simple amateur requirements. Learning the code is such an insignificant thing. In fact, without a code test, the "exam" would be a joke. The average intelligent person can, with a few hours of serious study, learn all the theory necessary for a license. If these "would be hams" had spent their spare time with the code, instead of trying to devise ways of beating the "exam," they would be on the air now. However, if they intend sitting around, waiting for this absurd change to take place, they will all have long flowing white beards before they "crash the gate." In your Short Wave League department, I noticed a letter written by Richard Colwell a few lines of which I will quote. In your SHORT WAVE LEAGUE department, I noticed a letter written by Richard Colwell, a few lines of which I will quote: "Most people in our town don't give a whoop about code. Phone transmission gives everybody listening in a thrill, but who cares for dots and dashes? I want to have a station, but I don't want to send code." Mr. Colwell's letter in substance is like Mr. Colwell's letter, in substance, is like all the rest written by those whom I assume are unaware of the true purpose of amateur radio transmission. He wants to have a station, but doesn't want to send code.—Why? To call up his friends? To give everybody listening in a thrill? Surely it will be a great day for radio when those of Mr. Colwell's high ambition are on the air. I might suggest the telephone as a means of calling his friends. (Cheaper The gist of all letters of this type in- The gist of all letters of this type indicates that the writer's desire is a new "toy." Amateur radio communication is not a plaything, but a serious endeavor towards the betterment of radio in general through intelligent experimentation. These squawkers vow they will experiment, and try to improve DX—ROTI Aperson who has such a lack of mental capacity or mental discipline, that he can't or won't learn the code, certainly will never put forth the effort needed to improve upon the present inability of 5 meters to be received beyond the horizon. Fellows of this sort are not interested in better results; they are satisfied with any results at all. To me, it seems that those who say they To me, it seems that those who say they don't want to learn the code are on a par with one who might say he didn't want to learn to read and write, because he could hear and talk. I am not as yet the holder of an amateur license, but I soon will be, and I'll go first class, code and all. Yours very truly, FRANCIS ROSE, 742 Regents Drive. 742 Regents Drive, Portland, Ore. ## \$500.00 Prize Contest (Continued from page 16) 7.—This contest is open to everyone, whether you are a newsstand reader or subscriber. 8.—From the contest are excluded employees of SHORT WAVE CRAFT magazine and their families. 9.—This contest closes on May 30, at which time all entries must have been re- ceived. ceived. 10.—The editors of SHORT WAVE CRAFT will be the judges of this contest, and their findings will be final. 11.—No correspondence can be engaged in on this contest, nor letters answered, nor the entries returned. 12.—In the event of "ties" the prizes tied for will be awarded to the contestants so tving. tying. In the next issue a full list of prizes will be given. The prizes will be sent from the radio manufacturers and radio firms to the winners at the end of the contest, and the results giving the winners' names will be published in our August issue. Address all entries to Title Contest Editor, SHORT WAVE CRAFT, 98 Park Place, New York City. New York City. ## C.B.S. Uses S-W's in **Inaugural Broadcast** (Continued from page 6) (Continued from page 6) Technical Supervisor of Columbia's station WJSV, in Washington, and Henry Grossman, Eastern Division Chief, in the field. Assisting Husing at various points of activity there was a staff of veteran commentators, including Frederic William Wile, Edwin C. Hill and H. V. Kaltenborn, plus a number of men from the regular announcing staff, including Robert Trout, Washington Presidential announcer, and John Mayo, Harry von Zell and Don Ball of the New York key station, and Ted Church of the Washington office. The entire presentation was divided into seven sections. First the "preview"; second, the journey to the Capitol; third, the Vice-Presidential Inauguration; fourth, the Presidential Inauguration; fifth, a musical interlude by the United States Service Bands; sixth, the parade, and seventh, the Inaugural Rull. Bands; sixth, the parade, and seventh, the Inaugural Ball. Inaugural Ball. Each section, with the exception of the parade, was approximately one hour in length. The parade description consumed about two hours. The broadcast began at 9:00 A. M., EST., and lasted until 4:00 P. M., EST. The Inaugural Ball was heard from 10:00 to 11:00 P. M., EST. The parade coverage brought into play a United States Army blimp for an "air description" of the City of Washington as it appears on Inauguration Day. A short wave pickup point was used for this part of the broadcast, as well as a pick-up point for a short wave set installed in an automobile which traversed the city. In addition, a portable transmitter was used for interviewing visitors from neighboring states, as they poured into the Capital at Union Station, the airport and on the highways. 24 Pick-up Points ### 24 Pick-up Points Twenty-four pick-up Points Twenty-four pick-up points, including two mobile units, were brought into play when the C. B. S. system devoted the entire day of Saturday, March 4 to an aerial presentation of the ceremonies attendant to the inauguration of Franklin D. Roosevelt as President of the United States. The "coast-to-coast" network covered the proceedings from 9:00 A. M. to 4:00 P. M., EST, without intermission. Microphones dotted the
streets of Wash- EST, without intermission. Microphones dotted the streets of Washington from Union Station to the White House and up Pennsylvania Avenue to the Capitol. A mobile transmitter in a motor truck cruised about the city picking up the day's events. Another mobile transmitter in an army blimp provided a bird'seye view of the city. There was a pre-Inaugural Day broadcast on Friday, March 3, when the arrival of President-Elect Roosevelt in the Capital was described from Union Station. The motor truck transmitter carried on the broadcast with a running description of Mr. Roosevelt's trip to the Townsend home, where he spent the night. ## A 3-Tube "DX-er" That Hauls 'em In (Continued from page 19) Two gang .00015 mf. tuning condenser. 1 mf. bypassing condensers (Aerovox) Radio Frequency chokes (Home-made or bought) 400 Ohm bias resistor (Lynch) 2000 Ohm bias resistor (Lynch) .0001 mf. Grid condenser (Aerovox) (Polymet) 1 .0001 mf. Regeneration condenser (Hammarlund) marlund) 1.002 mf. coupling condenser (Micamold) (Polymet) 1.006 mf. coupling condenser (Sprague) (Polymet) 1.250,000 Ohm det. plate resistor (Lynch) 1.500,000 Ohm grid resistor (Lynch) 1.phone plug 1.ant.-gnd. post 1-58, 1-57, 1-56 tube. Two Trutest (or other) tube shields 1.vernier dial (preferably Pilot "Art") Volume control and vernier knobs. ## SHORT WAVE FANS — HAMS — SET BUILDERS Buy Your Parts From Baltimore Radio and Save! | Power Transformers: Cat No. | | Ratio 31/2 to 1 Ratio | S to 1 | |--|--------|--|----------| | R.C.A. 1100 V. Hi. and 2-714 V. windings. Two of | Price | Type Cat. No. Price Cat. No. | Price | | these may be used in series to obtain 2200 v. iti 10158 \$1 | .95 | De Luxe | .65 | | R.C.A. 600 V. Hi, and 2-714 V. windings | .95 | in Radiola 80. Victor 35, etc. 12938 | .88 | | 4 amp, and 2-214 V. 9 amp, in crystaline case | | Single Button Mike input transformer | .29 | | with stand-off insulators, | 7.45 | Double Button Mike input transformer Shielded11068
R.C.A. Audio Transformer, ratio 3 to 1. shielded13478 | 1.95 | | Replacement Power Transformer for all standard
midgets, 214 V., SA., 5 V. 2A., 700 V. Hi Side | | Shielded Output from P.P. 71, 45, 50 to 10-15 ohm | | | mounting | .85 | voice coil | .19 | | Victor R-32, etc. brand new | 2.65 | Freed-Eisemann NRSO Output, ratio 1 to 112798 | .09 | | R.C.A. 17. 18, 33 | 2.45 | Chokes: | | | Filter Condensers: | 43 | 30 Henry, 125 mil. double choke, 190 ohms, wt. 8 ibs 14148 | 5 .29 | | Federal 1000 V. Paper Transmitting condenser in | | Majestle 30 henry, 125 mil, 500 ohms | :19 | | metal can with stand-off insulators, 2 Mfds, No. | | Victor 30 heary choke, 150 mils, 200 ohns, | | | 11618-\$1,25; 4 Mfda | 2.25 | Resistors: | | | Sprague 8 Mfd. Electrolytic condenser. 14468
Sangamo 2 Mfd. 1000 V. condenser. 14548 | :35 | Kit of 50 assorted 1 watt carbon pigtails | \$.95 | | R.C.A. 1000 Volt vardboard container condensers: | | Amortment of 25 vitrous ename! Voltage dividers19768 Ward-Leonard 100 watt resistors, 5, 6, 057 ohms, ca. | 1.95 | | .5 MfdNo. 14768 5.18 2. Mrd. No. 14788
1. MfdNo. 14778 5.22 4. Mfd14798 | .34 | | .03 | | Federal 600 voit bangant condensers with pictails: | .60 | Volume Controls: | | | .5 MfdNo. 14398 \$.13 2. Mfd14568 | .25 | Kit of 25 assorted volume controls, standard makes 13018 | \$1.95 | | 1. Mfd., No. 14508 \$.15 4, Mfd., 14578
General Electric 3 Mrd, 600 V, in metal case | .40 | Centralab 2000 ohm variable voltage divider 40648
DaJur heavy duty theostate, 2 Ohms, 40 watts 20168 | .09 | | Genera Electric 4 Mfd. 800 V. in metal case 13088 | .60 | 6 Ohms. 2 amps, 20158 | .19 | | Transmitter Parts: | | Hi-test Wire wound potentiometers, bakelite case, | .49 | | Quarts Crystals with high power output, to your | | all sizes from 20 to 40.000 ohnus.ca | .24 | | approximate frequency, 80 to 160 meter bands \$ 2 | 2.50 | Radiola 17, 18, 33 volume control, brand new 4080S | .39 | | 50 Watt transmitting tube socket | .95 | Victor R32, dual Volume control, 3800-3800 13028
Victor 500 phm phonograph pickup volume control, 40748 | .45 | | | 9.50. | | , | | Dual Time Delay switch for mercury vapor tubes 3508S | .95 | Miscellaneous Parts: | | | Audio Transformers: | | Eby bakelite non-removable head binding posts, doz. 3909S Eby bakelite wafersockets, 4, 5, 6 and 7 prongs, doz. | .50 | | Sangamo P.P. Input for 71, 45 and 50 tubes 13238 \$ | .75 | Assortment of 25 bakelite and wood knobs 19518 | .95 | | T.C.A., P.P. Input for all power tubes | .85 | R.F. Chokes, low distributed espacity: 40 Mils., 25029
80 Mils., 25038 | .07 | | Federal Pentode output, 7000 ohms to 8-12 O. Voice | | Majestic 40 mil double R.F. choke, unshielded 25049 | .35 | | Mignon Audio Transformers | .79 | Zenith or Stewart Warner TRF coils, set of 4 | .50 | | Ratio 3 4 to 1 Ratio 5 to | n 1 | I lb assortment of screws, nuts, washers | 1.49 | | Type Cat. No. Price Cat. No. | i*rice | Universal Model X 2 button Mike 3058 | 5.88 | | Junior | .35 | Shielded 3 wire microphone cable, per (t | 1.29 | | oupertone | .43 | Guaranteed 210, 200 and 201 tubes, each. | | | 88 PAGE CATALOG | - | TERMS: | | | containing over 3000 items BALTIMOR | 上/图点 | If you are purchasing | | | Baltimore Radio Bulletin | = 17.1 | RADIO CORP. for the first time, sen deposit with order, | | | containing valuable data for | Dank | | for full | | the lam and experimenter. /25 Broadway. | Dept. | S., New York City remittance with order | | ### WHOLE SPEAKS-WORLD ## The New **ADMIRALTY SUPER-15** MULTI-WAVELENGTH SUPERHETERODYNE In design and engineering, the world's most advanced Radio Receiver. This great new 16-Tube Model opens up a vast new stage of magnificent entertainment. Dependable long distance reception with the lure of overseas programs via short waves, as well as your favorite broadcasts as they originate at the station. This is the true Romance of Radio that awaits you. The Admiralty Super-15 provides the maximum in sensitivity, selectivity and quality of reproduction ever promised. Complete literature sent on request. Address ## NORDEN-HAUCK ELECTRIC & MFG. CO. 402 Cherry Street, Philadelphia, Pa. U. S. A. "Builders of the Highest Class Radio Apparatus in the World." ## New Genuine MAKALOT S. W. Sockets "IT'S THE CONTACT THAT COUNTS" FOR ABOVE OF BELOW PANEL MOUNTING ### 437 Genuine MAKALOT S. W. Lab. Sockets ALDEN PRODUCTS CO. Popt. SWS, 715 Center St. PROCKTON. MASS. NA-ALD ## LEARN AT HOME TO BE A ## Good Radio Operator It's Easy Code Teaching Machine Pleasant, Interesting work. No experience necessary. We guide you step by steh—furnish you Complete Code Course and lend you The New Master Teleplex. Teleplex has instructed more students in the code in the past ten years, than all other systems combined. It is the only instrument ever produced that will record your own sending in visible dots and dashes, and then repeat it you audibly on headphones. Used by U. S. Army and Navy, R. C. A., A. T. & T. Co. and others Get started NOW. Low cost, easy terms. Write for folder SW-5 giving full details. TELEPLEX COMPANY 76 Cortlandt St. New York, N. Y. ## New! New!! New!!! TWO NEW 25c SHORT WAVE BOOKS ## HERE IS GREAT NEWS PURSUANT to many requests from our readers, we have decided to publish two new popular short wave books, for which there is a persistent demand at this time. These new books contain everything on the subjects worth knowing and both books will be welcomed by all short wave experimenters, short wave fans and short wave enthusiasts, the same as our former two books HOW TO BUILD AND OPERATE SHORT WAVE RECEIVERS, and HOW TO BECOME AN AMATEUR RADIO OPERATOR were welcomed by thousands of our short wave friends. In conformity with the times these books have been priced at 25c instead of 50c, which is the price of our other books. Yet the two new 25c volumes that we are offering now contain a tremendous amount of information and the type and illustrations have been chosen in such a manner as to give you almost as much for your 25c as you received for your 50c before. Only by increasing the press run enormously and making other printing economies has it been possible to price these books at such a low, popular price. You will make no mistake in getting either or both of these new and popular books and we know in advance from our many years of experience with short wave enthusiasts that you will thank us for having made these books possible. ## Ten Most Popular Short Wave Receivers. How to Make and Work Them This new volume will be a revelation to all those who wish to build their own short wave receivers. The editors of SHORT WAVE CRAFT over a period of years have learned to know exactly what short wave experimenters and short wave set builders and these are described in the new volume. Everything worthwhile about every one of the ten receivers is described in the new volume. Everything worthwhile about every one each receiver has a complete layout, pictorial representation, photographs of the set complete, hookup and all worthwhile specifications, so there is nothing left to your imagination when it comes to building any one of these ten popular receivers. Everything from the simplest one tube set to a six tube superheteredyne is presented. Complete lists of Darts are given to make each set as complete as it is humanly possible to do. You can select any or all receivers and know beforehand that you will be able to successfully build and operate such a receiver and not waste your money in building some theorist's dream-child you will also be shown how to operate the receiver to its maximum efficiency. ## IMPORTANT THERE IS NO DUPLICATION WHATSOEVER BETWEEN THIS BOOK AND OUR OTHER VOLUME ""HOW TO BUILD AND OPERATE SHORT WAVE RECEIVERS." ALL THE MATERIAL PUBLISHED IN THE
NEW BOOK HAS NEVER APPEARED IN ANY BOOK BEFORE. This book has been edited by the editors of SHORT WAVE CRAFT, which alone is a guarantee that you will get satisfaction and that nothing has been left undone to give you between two covers the greatest selection of short wave receivers ever published. PRICE 250 PREPAID OVER 75 ILLUSTRATIONS | | | | | | ********* | |----|--------|--------------------|----------------|-------|-----------| | 96 | ORT WA | VE CRA
Place, 1 | FT
New York | City. | SW-5-33 | 90-98 Fark Place, New York City. Gentlemen: I enclose herewith 25c, for which please send me as soon as published, prepaid, a copy of your new book "Ten Most Popular Short Wave Receivers. How to Make and Work Them." The book to be sent to me immediately upon publication. I enclose herewith 25c for which please send me as soon as published, prepaid, a copy of your new book "The Short Wave Beginners Book." The book to be sent to me immediately upon publication. I enclose 50e for which please send me, prepaid, as soon as published, your two books. "Ten Most Popular Short Wave Receivers. How to Make and Work Them." and "The Short Wave Beginner's Book." The books to be sent to me immediately upon publication. (Send money order, check, cash or new U. S. stamps. Register letter if it contains currency of (Send money order, check, cash or new U. S. stamps. Register letter if it contains currency or stamps). Name Address City State ## A Short Wave Beginners Book Here is a book that will solve your problems if you are new to the short wave game. It contains positively everything that you would wish to know in connection with short waves, leading you in easy stages from the simplest fundamentals to the present stage of the art in short waves as it is known today. It is fendly low-priced reference book on short waves for the beginner, whether he be a short wave enthusiast, short wave listener or short wave amateur. The book is profusely illustrated with all sorts of illustrations, explanations and everything worthwhile knowing about short waves in this interesting and growing field. Yet withal, the book is not "technical," It has no mathematics, no "high-failuting," language and no technical largon which would only serve to frighten you away. The entire book is kept in popular language throughout. Wherever technical words are used, explanations are given, leaving nothing to the imagination. You are shown how to interpret a diagram and a few simple sets are also siven to show think has been done to make it possible to sire you a complete understanding of short waves from the ground up. acomplete understanding of short waves from the ground up. After reading this book, you will never be at a loss for short wave terms and you will not have to consult other text-books or dictionaries. The editors of SHORT WAVE CRAFT who have edited this book have seen to it that everything has been done to make this volume an important one that will be used as reference for the book covers everything. "from soup to nuta" and will be of tremstanding the standard wave art. The book covers everything, "from soup to nuta" and will be of tremstands of the standard with many illustrations, photographs, simple charte, hook-ups, etc., all in simple language. It also gives you a tremendous amount of very important information which you usually do not find in other books, such as time conversion tables, all about aeriads, noise elimination, who to get verification ends from foreign estations, all about radio tubes. The book is just shock full of information having soften this important volume. You will keep referring to it every day in your work. PRICE 25c PREPAID 40 PAGES OVER 75 ILLUSTRATIONS ## The FBX "Single Signal" S-W Receiver (Continued from page 31) as witnessed by the fact that there is no "other side of zero beat." The selector switch, referring to the diagram, is used to connect the crystal in series gram, is used to connect the crystal in series for true single signal reception, remove it from the circuit entirely, or connect it in parallel. The parallel connection is useful, particularly in phone reception, since the crystal will now reject a narrow group of frequencies and may, in consequence, be employed to eliminate heterodyne interference by adjusting the high frequency circuits so that the unwanted signal sets up an I.F. equal to that of the crystal. The single signal receiver is said to represent the finest "C.W." (code) receiver yet developed and it has in addition nuyet developed and it has in addition numerous advantages for phone reception. Further details on the single signal receiver are to be found in Q.S.T. (Aug. and Sept. 1932). This type receiver is marked by its extensive selectivity and also by the fact that the annoying double beat characteristic of autodyne detectors is eliminated. Some additional data on the FB7 receiver is here presented: The capacity of the main tuning condensers, both 1st detector and oscillator circuits, is 105 mmf. each. The trimmer condensers have a maximum capacity of approximately 40 mmf. The beat oscillator coil consists of a winding of about 1 millihenry inductance, tapped % of the way from the grounded end. (The % referring to turns and not inductance.) The two standard 70 mmf. I.F. tuning condensers are connected in parallel to obtain a high-"C" circuit. The inductance of the I.F. coils is approximately 3% millihenries and the tun- proximately 3½ millihenries and the tuning condensers are 70 mmf. maximum. The intermediate frequency is about 480 kc. This data was kindly furnished by James Millen, of the National Company. ## Coil Data: National FB-7 General Coverage Coils DETECTOR | Secon | | Prir | пагУ | Detector | | |--------|-------------|-------|-------------|-----------|---------------| | | Bize | CTD. | Size | Form | . VI.O | | Turns | Wire
No. | Turns | Wire
No. | per in. | nange KC | | 6 1/3 | 16EN | 3 | 24EN | 5 th'rds | 19.500-11.400 | | 11 5/6 | 18EN | 3 1/2 | 24EN | 8 th'rds | 11,700-7000 | | 21 5/6 | 18EN | 5 1/6 | 34D8 | 14 th'rda | 7300-4000 | | 34 5/6 | 24EN | 7 5/6 | 34DC | 24 th rda | 4200-2400 | | 58 5/6 | 28EN | 8 5/6 | 32D8 | 40 th'rds | 2500-1500 | | | | | | | | ## OSCILLATOR | A | В | c | Ne | otal
p. of | Size | Form
Grooved | |-------|--------------|--------------|-----------|---------------|------|-----------------| | | | | t u | LEDS | No. | per in. | | 2 1/ | 6 —— | 4 1/ | 6 6 | 1/6 | 16EN | 5 thr'ds | | 2 1/ | 6 | - 9 | 11 | 1/6 | 18EN | 8 thr'ds | | 4 1/ | 6 — | → 14 1/· | 3 18 | 1/2 | 20EN | 14 thr'da | | 7 1/ | 6 20 | 5 2/ | 3 32 | 5/6 | 24EN | 24 thr'de | | 11 1/ | 6 27 1/2 | 2 17 17 | 6 55 | 5/6 | 28EN | 40 thr'ds | | A- | -from botto | om end to l | at tap. | | | | | B- | -from lst to | ap to 2nd t | aP. | | | | | C- | from last | tap to top e | end coil. | | | | GLOBE TROTTER "TROTS 'EM IN"! GLOBE TROTTER "TROTS 'EM IN"! Editor, SHORT WAVE CRAFT: I have just built the "Globe Trotter" and want you to know that it sure trots them in! I think you have the finest magazine in existence, but I would like to see more "one" and "two tube" sets. I am not an amateur, but I soon hope to become one. I wish you would publish the letter in your "ham" section and I would like to hear from fellows in all stages of this great radio game. I promise to answer all letters. Yours with 73. FRANCIS MacARTHUR, 527 South Avenue. 527 South Avenue, Rochester, N. Y. (Pleased to know, Francis, that the "Globe Trotter" trots in the short wave stations. We have had several thousand letters complimenting us on the "Globe Trotter" receiver described by Bob Hertzberg in the November issue. Thanks very much for your kind words and as you will note from recent number of Short Wave Craft, we are endeavoring to publish plenty of one, two, and three tube sets.—Editor.) ## The S-W Beginner (Continued from page 33) the remaining side of the tickler coils; so that we shift the connections from the coils to the grid and plate circuits all at the same time, by turning the knob on the on the switch, you will find five soldering lugs on each of the bakelite discs. Four of these are arranged with an equal spacing between them, while the fifth is spaced further apart than the others. The latter lug is the common connection that is made to the plate or grid circuits (shown as the knob of the switch in the schematic). You will also notice that on the three knob of the switch in the schematic). You will also notice that on the three dises, the four contacts on each disc are opposite each other. Connect the grid end (top end) of each of the secondary coils to the four lugs on the disc furthest from the panel; starting with the smallest coil on the left lug (looking from the panel) and progressing toward the right with the largest coil. Then connect the common connection of the next switch section to choke coil L3 and condenser C7. Connect the ends of the tickler coils nearest to the secondard (the top ends) to the four switch lugs for the second section—making sure that you start with the smallest coil on the left hand lug (looking from the panel) and progressing toward the the panel) and progressing toward the right. Finally connect the common terminal for the section nearest to the panel to the plate terminal on V2 and repeat the connections for the lower ends of the four tickler coils (with the smallest coil on the left contact). As mentioned before, the remainder of the wiring in the set is not difficult and the wiring diagrams will not be difficult to follow. Operating the Set When all the wiring is complete, connect up the batteries or power units. As the tubes in the set are of the "cathode" type in which the filament is used simply to heat the cathode, it does not matter which filament binding post is connected to the positive or negative side of the storage battery, if batteries are used. If a "B" power unit is used, the connection to "B" plus 67 volts should be made to the output
tap which supplies the voltage nearest to this value; then connect a variable resistor in the lead, to adjust it to the correct value. If the output voltages are adjustable on the power unit, the latter expedient is unnecessary, of course. After the batteries or power unit have been connected, the tubes should be placed in the correct sockets (they cannot be shifted around) and the power turned on. Turn the band selector switch to the extreme right and the volume control all the way to the right. The set should be oscillating and when a station is passed on the tuning dial, a whistle will be heard. The volume control should then be turned to the left until the whistle stops. If the set does not oscillate with one or more of the coils, you may have to connect a small aerial condenser between the aerial wire and the aerial binding post. This condenser consists of two small brass angles fastened on a wooden or bakelite base with two ends parallel similar to the one we used in the first Beginner's set described in the August, 1932 issue. By varying the distance between the plates, the "dead spots," as they are called, can be eliminated. In wiring the receiver it is important to keep all wires as short as possible especially the avenual transpossible especially the avenual transpossible especially the When all the wiring is complete, connect In wiring the receiver it is important to keep all wires as short as possible especially the connections between the coils, switch and detector tube socket. DON'T MISS COMPLETE "Grand List" of ALL S-W Stations In Next Issue! ## **AERO** INTERNATIONAL ALL WAVE 11-TUBE SUPER-HETERODYNE DE LUXE Completely Assembled With 2 Matched Full Dynamic Speakers \$29.75 At last! World wide re-ception at a sane price. 15 to 550 meters. Besides the regular broadcast band, it brings in for- police calls, ships at sea and aeroplanes. One dial control. No plug in coils. Latest superphonic tubes. ## **AERO 4-TUBE MIDGET** \$10.95 less tubes \$2.95 kit of tubes The lowest priced quality Midget Receiver on the mar-ket today. Very selective, brings in long distance like brings in long local stations. AERO 5-TUBE MIDGET \$11.90 AERO 6-TUBE MIDGET 18.50 ## AERO WORLD WIDE 1-Tube SHORT WAVE \$5.95 SET for Head-phone Operation ## CHARLES HOODWIN CO. STOPPANI BELGIAN COMPASS Worth \$60 your price \$4 GOLD SHIELD PRODUCTS CO. 112 Chambers St. S. W. E. New York, N. Y. ## SHORT WAVE SENSATION! Science has perfected a new device that will bring in Short Wave Stations with loud speaker volume. Easily attached to any radio. Packed with "thrills." C. H. Smith, 9885 Candler Bldg., Kansas City, Mo., wants local agents and will send a no-cost sample. So write him today. ## WORLD'S BEST RADIO BOOKS IT IS always the well-trained man who wins out over the horde of thousands of superficially trained and incompetent men. You are reading this magazine because you are interested in radio. Sooner or later, the time will come when you will wish to cash in an your knowledge. Your chance may come over night, and then the big and vital question will be. 'How well equipped am I to fill the jeb?' You are in radio because you like it. You also realize that, at the present time, there are many branches of the radio art which you do not knew as thoroughly as you should. Knowledge, these days, can be gotten cheaper than ever before. It isn't necessary for you to go to college to become proficient in radio. Start today, to build a REAL radio library and become acquainted with all branches of this great and growing art. In this page are listed the world's best radio books. We have combed the market for the really important books in radio; so that, no matter what branch you are interested in, you can pick out the best books that are now printed. Start, now, to build a complete radio library. You do not have to get all the books at once, but make up your mind to get one book a month; so that, when your chance comes, you will be fully equipped to win out over the others not so well equipped. ## IMPORTANT.—This list is changed every month to include the latest books. Note also new low prices. THE RADIO HANDBOOK, by James A. Moyer and John F. Wostrel. Ficzible covers, size 5½x8", 886 pages, 650 illustra- \$5.00 Comprehensive data on short-wave of the street t Comprehensive data on short-wave apparatus, vacuum tubes, modern radio receivers and transmitters, photoelectric cells, tolevision, sound motion pictures, tables, graphs, diagrams, etc. No radio man should miss it. RADIO FREQUENCY ELECTRI-CAL REQUIREMENTS, by Hugh A. Brown. Cloth covers, size 6x9", 386 pages, 235 il- \$4.00 lustrations. Price One of the few great books on this important subject. Everything from thermionic-tube coefficients to piczo-electric measurements. PRACTICAL TELEVISION. by E. T. Larner. Cloth covers, size 5½x8½.". 223 pages, \$3.75 This book explains television in full, including elementary principles, photo-electric cells, and all important types of television sets as well as basic principles of optics, images, mirrors, lenses, etc. MAGNETIC PHENOMENA, MAGNETIC PHENOMENA, by Samuel Robinson Williams. Cloth covers, size 6x9", 230 pages, 150 illustrations, and numer- \$3.00 and tables. Prico Magnetic and dynamic loud speakers, transformers, choke colls, etc., are dependent on magnetic phenomena. This line book is complete on the subject. CINEMATOGRAPHY, by James R. Cameron. Still covers, size 7%,5°, 240 pages, 150 \$4.00 libustrations. Price. Stilled and "silent" and "talkie" 16 mm. film to its manufacture and to the final projection is in this marvelous volume. AUDELS RADIOMAN'S GUIDE, by Frank D. Graham. Cloth covers (fiexible), size 5x6%", 220 pases, 300 illustrations. \$1.00 A practical, concise book present-ing the theoretical and practical information for the proper opera-tion, maintenance and service as applied to modern radio practice. THE RADIO A MATEUR'S HANDBOOK. (New Revised Edition), by A. Frederick Collins. Cloth covers, size 5%x7%". 394 pages, 116 illustrations. \$2.00 Price \$2.00 If you wish to become a radio amateur (radio ham) this book tells you how. Everything in rereceiving and transmitter sets and how to build them. EXPERIMENTAL RADIO, by R. R. Ramsey, Prof. of Physics, Indiana University. Cloth covers, size 7½x5½°, 256 pages, 168 illustrations. Price, \$2.75 A marvelous book for the experimenter. Experiments galore in easy comprehensible language. RADIO THEORY AND OPERATING, by M. T. Loomis, 5th revised Edition, Cloth-bound; size 5½x8x1½, thick; 1,000 pages; over 800 illus; 450 review questions and answers. \$4.50 Prico \$4.50 Written in textbook style, a tremendous amount of useful information has been erammed into this thin-paper, compact reference work. Radio transmission and reception have been covered, "from soup to nuts." A truly great book. 9. GERNSBACK'S RADIO EN-CYCLOPEDIA (Second Edition). Red Morocco Flexible Binder. 352 pages, 2201 radio definitions, 1233 Illustrations, 34 tables. Price \$3.25 Price 33.25 The most comprehensive encyclopedia of its kind in print. Remarkably up-to-date in every way, with marvelous illustrations. DRAKE'S CYCLOPEDIA OF RADID AND ELECTRONICS, by H. P. Manly. Cloth covers, size 659". 1050 pages, 1080 fillustrations. New 1932 Edition. Price \$5.00 The largest work of its kind ever put between two covers. New and up-to-dag; a standby for every radio man. FUNDAMENTALS OF RADIO, by R. R. Ramsey, Professor of Physics, Indiana University. Cloth covers, size 9½x6", 372 pages, Illustrated. \$3.50 Illustrated. \$3.50 Price prepaid. \$3.50 The backbone of the radio art. This book gives you the foundation on radio from A to Z. Contains over 600 questions and answers covering all phases of licensed radio oberation. Revised to contain much new material. Nothing better in print for the transmitting and receiving ama-teur. teur. OFFICIAL RADIO SERVICE MANUAL, Volume I, by Hugo Gernsback and Clyde Fitch. Flexible loose-leaf binder, size 9x12", over 2.000 illustrations, 650 pages. COMPLETE WITH SIX SUPPLEMENTS. Price prepaid..........\$4.50 The Service Man's Bible. Greatest book ever published on the subject. Contains all old circuits of every imaximable commercial radio set up to 1931. set up to 1931. THE RADIO MANUAL by George E. Sterling and Itob't S. Kruse. E.E. 2nd enlarged edition. Flexible fabrikoid covers. Size 5%, x8". 805 pages, 348 \$6.00 A complete Radio Course for the operator, the technician, the amateur, the student and experimenter. Everything imaginable in the whole radio art is covered in this great book—the "radio Bible" of the amateur. DON'T MISS THIS. HOW TO We cannot ship C. O. D. Our prices are net, as shown. Some of the books sent prepaid (In U. S. only.). Those that are not thus listed will be shipped by express collect if sufficient postage is not included by you. Rudolph L. Duncan. Cloth covers, esize 5½28". 246 pages, 145 lilustrations. Numerous \$2.50 tables. Price \$2.50 this textbook gives you the fundamentals of electricity as applied to radio. It equips you for further study in the field of radio. PRACTICAL RADIO CONSTRUCTION AND REPAIRING. by J. A. Moyer, S.B., A.M. and J. F. Wostrel. Cloth covers, size 8x5", 354 pages, 163 \$2.50 A handbook that every radio set tester and general student must have. The diagrams alone are worth the price of the book. A POPULAR GUIDE TO RADIO, by B. Francis Dashiell Cloth covers, size 5½x8½", 286 pages, profusely illustrated. \$3.50 The fundamental principles of radio. From crystal rectifiers to the latest electron tube amplification, etc. PRINCIPLES OF RADIO COM-MUNICATION, by J. H. More-croft, Prof. of Electrical Engine eering, Columbia University, Cloth covers, size 9½x6", 983 pages, profusely illustrated. \$7.50 RADIO SERVICE MAN'S HAN-DY-BOOK WITH ADDENDA DATA SHEETS. Flexible covers, size 9x12", 200 pages, 400 illus-trations. The Service Man's standby. Contains the latest practical information on radio servicing. HOW TO PASS U.S.
GOVERNMENT RADIO LICENSE EX-AMINATIONS, by R. L. Duncan and C. E. Drew. Flexible covers, size 9½x1", 170 pages, 92 litus-trations, appendix. \$2.00 Price \$2.00 The most important book on the subject ever published. Gives every conceivable angle which will help you to pass a radio license examination successfully. RADIO MOVIES AND TELE-VISION. by C. Francis Jenkins. Cloth covers, size 9½26", 144 pages, profusely illus-trated. Price. \$1.00 A complete volume by the master of television, fiving cerything in television, including constructional details for building your own tele-vision sets. rision sets. RADIO PHYSICS COURSE (2nd enlarged edition), by Alfred A. Chirardi. Cloth covers, size 7½x 9½, 992 pages, 510 illustrations, numerous tables. \$3.50 We herewith present the most complete collection of recent important radio books. We have, after an exhaustive study, selected these volumes because they represent the foremost radio books of their kind in print today. There is such a great variety that we are sure it will satisfy any taste as well as any requirement that the student of radio might have. We publish no catalog and ask you to be kind enough to order direct from this page. Prompt shipments will be made to you direct from the publishers. We merely act as a clearing house for a number of radio publishers and OUR PRICES ARE AS LOW OR LOWER THAN WILL BE FOUND ANYWHERE. Remit by money order or certified check. ...!! you send cash, be sure to realister it. SHORT WAVES, by C. B. Leutz and R. B. Gable, Stiff Covers. Size 639", 384 pages, 258 illustrations. Price, \$3.00 The biggest and most complete hook on short waves. Covers every imaginable phase, including S. W. Superheterodynes. The authors are famous S. W. authorities. SOUND PICTURES AND TROUBLE SHOOTERS MANUAL, by Cameron and Rider. Cloth cover, size 8x5½". 1120 pages, profusely illustrated. \$7.50 The standby of every operator. It is the most thorough book on the subject. ELECTRICITY AT HIGH PRESURES AND FREQUENCIES, by Henry L. Transtrom. Cloth covers. size 7½ x5¼", 248 pages. 141 illustrations. \$2.35 OFFICIAL RADIO SERVICE MANUAL, Volume II, by Hugo Gernsback, C. E. Denton and C. II. W. Nason, with 1932 Free Supplements, 1000 pages, 2000 II. lustrations. Flexible Loose-leaf Brinder, size 0 g/12". \$4.00 The talk of the radlo Industry. This marvelous volume centains every thing in radio, circuits and radio developments, for 1932. Not a line of duplication between 1931 and 1932 volumes. (Vol. I and Vol. 2.) ORDER DIRECT FROM THIS PAGE RADIO RECEIVING TUBES. by Moyer and Wostret. Cloth covers, size 7½x5½", 298 pages, 181 illustrations. \$2.50 One of the finest books on vacu-um tubes. Everything worthwhile on the subject treated in a mas-terful manner. RADIO TELEGRAPHY AND TELEPHONY, by R. L. Duncan and C. E. Drew (New Edition.) Cloth covers, size 9½16". 950 pages, 468 illustrations. \$7.50 Everything from Ohms Law to vacuum tubes and detectors, to oscillographs and radio compasses thoroughly treated in this great PHOTOELECTRIC PHENOMENA, by Arthur Llewellyn Hughes and Lee Alvin Dubridge. Cloth covers. Size 659%, 531 pages, 202 illustrations. \$5.00 A critical survey of the whole flekt of photoelectric phenomena, intended as a reference book for research workers, students and teachers. The most complete work in print. A practical book beginners and old-timers in radio service will induserul. Nine chapters discuss measuring instruments and tests, and trouble-shooting; the chapter, "Useful Information for Servicemen," closes the book. by A. Frederick Collins. Cloth covered. 816". 312 pares, 186 illustrations. Frice. \$2.50 In words of one syllable the author discusses fundamental principles; in the same vein he proceeds to build up descriptions of television equipment, each step being supported by simple, homemade experimental set-ups. PRINCIPLES OF RADIO, by Keith Henney, M. A. Cloth covers, size \$8.5 \(\frac{1}{2} \), 478 pages, \$3.50 A marvelously written textbook with the latest radio principles, including screen grid and pentode, amplifiers, etc. ### NEW LOW PRICE RADIO BOOKS Here are 13 new, up-to-date books on every concelvable radio subject, just published. Modern in every sense. ALL BOOKS UNIFORM from 64 to 72 pages 50 to 120 illustrations. Ail books written by well-known radio authors. Order by Number. No. 1 RADIO SET ANALYZERS, by L. Van Der Mel No. 2 MODERN RADIO VAC-UUM TUBES, by Robert No. 3 T H E SUPERHETERO-DYNE BOOK, by Clyde No. 4 MODERN RADIO HOOK-UPS. by R. D. Washburne No. 5 HOW TO BECOME A RADIO SERVICE MAN. by Louis Martin No. 6 B R I N GING ELECTRIC (RADIO) SETS UP TO DATE, by Ciliford E. Den-ton No. 7 RADIO KINKS & WRIN-KLES (for Experimenters) by C. W. Palmer No. 8 RADIO QUESTIONS & A N S W E R S, by R. D. Washburne No. 9 AUTOMOBILE RADIO & SERVICING, by Louis SERVICING, by Louis Martin No. 10 H O M E RECORDING AND ALL ABOUT IT, by Geo. I Salba No. 11 FUNDAMENTAL PRINCIPLES OF RADIO, by Louis Martin No. 12 HOW TO BUILD AND OPERATE SHORT-WAVE RECEIVERS, by the Editors of SHORT WAVE CHAFT No. 13 HOW TO BECOME AN AMATEUR RADIO OPERATOR, by M. F. Eddy, PRICE PREPAID SALL 13 BOOKS. \$4.85 RADIO PUBLICATIONS 245-S GREENWICH STREET NEW YORK, N. Y. ## Clifford E. Denton Clifford E. Denton • CLIFFORD E. DENTON, engineer and designer of numerous short wave receivers, sound equip-ment, etc., and author of many technical articles appearing in this and va-rious other radio magazines, has recently been appointed engineer-in-chief of the manufacturing erated Purchaser, Inc., of New York City. erated Purchaser, Inc., of New York City. Mr. Denton is a recognized authority on radio servicing. The "OFFICIAL RADIO SERVICE MANUAL" for 1932 was edited by Mr. Denton. Mr. Denton was formerly connected in the capacity of Chief Engineer with Farranti, Inc., during which time he designed the first commercial amplifier using type 250 tubes in push-pull, besides a number of high-quality talking picture outfits. Mr. Denton is very well known to all Mr. Denton is very well known to all Mr. Denton is very well known to all SHORT WAVE CRAFT readers as the designer and constructor of many fine sets described in this magazine during the past two years. Mr. Denton received an excellent academic education in engineering and through his close association with the manufacturing field, the designs that he has originated incorporate ideal combinations of theory and practice. SHORT WAVE craft readers may indeed count themselves extremely fortunate in having had presented to them the many fine articles by Mr. Denton. (Old "2AUW") ## A Coupling Stage for "Plugless" Super (Continued from page 25) may be built in a shield can, or you may shield just the coils and tube. It is best to incorporate a separate filament supply in with the unit, as shown in the diagram. For an antenna, the author uses a doublet tuned, fundamentally, to the frequency of VK3ME. This frequency is 9510 kilocycles. Each half of the antenna is 24.5 feet in length, determined by the formula Frequency = Length in feet. Your antenna, however, may be tuned to any frequency you wish, by following the above formula. If you care to read more about the theory of the doublet, read the article by Mr. Dillard, in the November issue of SHORT WAVE CRAFT. To produce the transposition To produce the transposition effect, which cancels out the noise, I use a shielded lead-in, twisting the two wires together. Thus, besides getting the effect of transposition, with its attendant noise elimination, the grounded shield also eliminates pickup in the lead-in. And, as the lead-in can do no more than carry the signal energy to the receiver, the length of the leads is not important. The writer would like to hear from builders of this unit, as well as from anyone who has built a super, and an answer is guaranteed to all who inclose postage. ## **BOOK REVIEW** Experimental Radio Engineering, by John H. Morecroft, E.E., D.Sc. Cloth covers; Size, 6"x9"; 346 pages; 250 illustrations; published by John Wiley & Sons, Inc., New York, N. Y.; price Professor Morecroft, who teaches electrical engineering at Columbia University, and who is past president of the Institute of Radio Engineers, is one of the foremost radio experts and his books on radio and electrical subjects are always welcomed by students of these subjects. Probably it is safe to say that the foremost text-books on radio engineering studied privately by students, and also for classroom use in schools and universities, are those of Professor Morecroft. This book, while having a rather ambitious title, is so clearly written that every student of radio will be able to understand the subjects presented. The first chapters are devoted to "introduction" and such interesting and fundamental topics and such interesting and fundamental topics and such interesting and fundamental topics as the kind of meters to use in radio laboratory measurements; rectifier-type meters; hot-wire meters; thermo-couples; wavemeters, etc. Later chapters deal with the laboratory measurement of mutual inductance of air-core coils; measurement of invalidation resistance. tance of air-core coils; measurement of insulation resistance, capacity and power-factor of condensers; parallel resonance and the effect of circuit changes on it; use of special bridge for measuring capacity at audio frequencies; measuring the phase angle of a condenser; calibration of a variable condenser; how to measure the natural frequency of an antenna—also its capacity and self-inductance; a study of the triode as a power converter; measuring the amplification factor and plate resistance of the triode; study of the characteristic curves of tetrodes and pentodes; study of superheterodyne detector; study of the cathode ray oscillograph and how of the cathode ray oscillograph and how to use it in making radio and audio frequency measurements. Photocells and Their Application, by V. K. Zworykin, E.E., Ph.D., and E. D. Wilson, Ph.D.;
cloth covers; size, D. Wilson, Ph.D.; cloth covers; size, 5¾"x8"; 332 pages; 180 illustrations; published by John Wiley & Sons, New York, N. Y.; price \$3.00. Photocells represent one of the latest devices discovered by modern science and the practical application of which is increasing daily by leaps and bounds, especially in the industrial field, where these small light-controlled devices are finding many hundreds of new uses in sorting various products, etc. Very little worthwhile information has been published on these magic "wonder-workers" and it is fortunate that we have this very fine textbook so clearly written and illustrated by two scientists who are outstanding in their profession—Doctors Zworykin and Wilson. Photocells represent one of the latest profession—Doctors Zworykin and Wilson. The authors explain the fundamental phe-The authors explain the fundamental phenomena occurring in photo-electric cells and the characteristics of the various suitable chemicals and metals utilized in constructing these devices. Selenium cells are discussed, as well as the new photo-electric cells with their vastly improved speed in response to a beam of light. Among many other topics discussed are photo-voltaic cells; color response; dynamic characteristics; optimum pressures; the gas-filled istics; optimum pressures; the gas-filled photocell; secondary emission; cells sensitive to ultra-violet rays; the photocell in photometry and colorimetry; color-analysis photometry and colorimetry; color-analysis and color-matching by photocells with diagrams and photos of the apparatus; the R. C. A. photophone and how it works; the photocell in television—with diagrams of amplifiers, etc.; the control of artificial illumination by photocells, including traffic controls, counting, automatic inspection of factory products; bean-sorting; photocells in the future and probable application, including infra-red detection or the possibility of seeing at night (nocturnal vision) by means of cells sensitive to infra-red rays. A valuable bibliography, a list of technical periodicals, and also appendix and index are given. pendix and index are given. ## RCA INSTITUTES Recognized Standard in Radio Instruction Since 1909 ## **Technical Training Courses** in Radio and Associated Electronic Arts Practical Radio Engineering Sound Engineering Broadcast Transmission Radio Servicing Commercial Radio Operating ### Resident Schools at New York and Chicago EXTENSION COURSES for HOME STUDY under new "no obligation" plan, with privilege upon graduation of 2 weeks' intensive practical training without charge at either Resident School. Mail Coupon for Illustrated Catalog Written in the Simpless Manner and the Clearest of Language! ## SHORT WAVE WIRELESS COMMUNICATION By A. W. LADNER Superintendent of Instruction, Marconi's Wireless Telegraph Co., Ltd. and C. R. STONER Late of Research Department, Marconi's Wireless Telegraph Co., Ltd. Here is a valuable book for engineers, technicians and the scientific amateur. The topics are discussed clearly and simply and include: Introductory; A Brief History of the Development of Short Waves; Notes on Electro-Magnetic Waves; The Propagation of Short Wireless Waves; The Modulation of High Frequency Waves; Push-Pull; High Frequency Transmitting Circuits-Self Oscillators; Short Wave Driven Circuits: Constant Frequency Oscillators; Modulation Circuits; High Frequency Feeders; Aerials Arrays; Problems of Reception and Simple Receivers; Commercial Receivers; Commercial Transmitters and Circuits; Ultra Short Waves; Appendices; Index. 348 pages, \$3.50. | A | W/ I | EY | 10 4 | 20 | BC | |---|------|----|------|----|----| | | | | | | | On Approval Coupon John Wiley and Sons, Inc., 440-4th Avenue, New York Gentlemen: Please send me Ladner and Stoner's "Short Wave Wireless Communication" for ten days approval. I agree to remlt the price of the book (\$3.50) within ten days or return it Postpaid. Nama - Address Position or Reference Members SHORT WAVE LEAGUE Read Page 43 ## You Can Become a Fast, Capable RADIO OPERATOR at Home Candler training en- "Candler training en-abled me to copy 56½ wpm for the all-time record."—T. R. Me-Eiros, Official Cham-plon Radio Operator of the World, 46 Ever-dean St., Boston, Mass. ## With the Famous CANDLER Scientific System FREE short wave press FREE short wave press schedules. Learn to copy px from Candler trained ops, sending out of principal px stations. Amazing results in short time. FREE ADVICE IF "STUCK." Write Candler. No obligation. Junior Course for ops with speed of 10 wpm or over who want to get in 30 to 45 wpm class and copy behind. Also Radio Typing Course. Save time and money by sending for FREE BOOK today. CANDLER SYSTEM CO., Dept. 25 6343 S. Kedzie Ave., Chicago World's Only Code Specialist ## RADIO OPERATING— RADIO SERVICING Prepare for the new Government Radio Operating license ex-aminations: Radio Operator, Marine and Broadcasting, Also Ra-dio Amateur Teledio Amateur Tele-graph and Telephone. Resident Resident courses. Write for booklet "Opportunities In Radio" West Side Y M C A Trade & Technical Schools New York City 18 West 63rd Street ### TRADE MARKS PATENTS COPYRIGHTS "Little Ideas May Have Big Commercial Possibilities" PROTECT THEM BY PATENTS Send for our Free book, "How to Obtain a Patent" and "Record of Invention" blank. Prumpt Service—Reasonable Charges—Deferred Payments HIGHEST REFERENCES VICTOR J. EVANS & CO. Registered PatentiAttorneys—Established 1998 651EE VICTOR BUILDING WASHINGTON, D. C. ## When to Listen In By Robert Hertzberg Our remarks in the March issue of SHORT WAVE CRAFT about our inability to pick up the new British Empire shortwave stations at Daventry (described in detail on page 714 of the April number) have brought forth a veritable avalanche of letters from readers all every the extractions. In explanation—not defense—we might remark that the "When to Listen In" department of the March issue was written during the middle of January, when the Daventry stations were just getting started. Only a few days after the magazine Daventry stations were just getting started. Only a few days after the magazine went to press the Empire stations started coming through with terrific strength—enough in fact, to completely overload a National SW-58 receiver. During the last week of February Daventry "went off the air"—without warning—but they reappeared just as abruptly! As we have warned several times, the S-W wavelengths and schedules are subject to change without notice. Listeners everywhere report the best reception of many months. Not only has Daventry been a consistent visitor, but Madrid, Rome, Pontoise, Moscow, Caracas and a whole mess of Central and South American stations have also contributed to many "log" books. After twilight, the police channels are simply "teeming with activity," while the amateur bands continue to acquire more and more occupants. We are building a portable five-meter phone outfit building a portable five-meter phone outfit to carry in the back seat of the family flivver, and expect shortly to agitate the ether around New York City under the call letters W2EXX. ## PCJ Short wave fans all over the world have been wondering what happened to PCJ, probably the most famous short wave broadcasting station on the air. This was the first important short-wave broadcaster, and achieved the most widespread international audience of any radio station in the world. In an effort to learn the fate of PCJ, we wrote to Philips Radio, Eindhoven, Holland, and received the following reply: Eindhoven, 24th January 1933 Dear Mr. Hertzberg: In reply to your letter please note that all reports regarding PCJ transmissions and reception of this station are without foundation. PCJ was closed in October 1931 and has not as yet resumed activities. foundation. PCJ was closed in October 1931 and has not as yet resumed activities. Although there is a chance of re-opening the station this year, no definite information about the date can be given just now. However, it will interest you to know that our station PHI on 16.88 meters has been on the air again for a month or so for experiments. Transmissions have now ceased, as alterations are being made with a view of changing the wavelength. The new wavelength will be 25.53 meters while the 16.88 meter wave will be used in the summer time. It is expected that within five or six weeks PHI will be on the air on the new wavelength. As you probably know, station PHI is principally meant to entertain our countrymen in the colonies (Dutch East and West Indies). Of course it is heard around the world and only last week we communicated successfully with the Dutch scientific expedition for polar research on Greenland. PHI's frequency is 17,778 kilocycles, crystal controlled. Input 130 kilowatts, 50 kilowatts in the antenna. The location is Huizen, near Hilversum, Holland. Huizen is on the shores of the Zuider Sea. The undersigned, formerly of PCJ, is now announcer and studio manager of PHI and will make announcements in various languages as on PCJ. First experiments on 25.53 meters will take place around the end of February. (Ed. Note: Just before this issue appears.) of February. (Ed. Note: Just before this issue appears.) s.) Very truly yours, E. Startz. Mr. Startz is one of the most versatile announcers on the air. He speaks Dutch, English, German, Italian, French, Spanish and Portuguese, and announces fluently in all these languages! Listen for him. RADIO CONSTRUCTIONAL CIRCUITS FOR SET BUILDERS. EXPERIMENTERS, RADIO STUDENTS, SERVICE MEN, RADIO ENGINEERS, ETC. RADIO CONSTRUCTIONAL CIRCUITS FOR SET BUILDERS, EXPERIMENTERS, RADIO STUDENTS, SERVICE MEN, RADIO ENGINEERS, ETC. The circuits listed below constitute the only available authentic source of experimental radio constructional information. They ever every type of receiver, including pentode circuits, automobile radios, super-hets, portables. Universal
A.C.-D.C. sets. Loftin-White circuits, Two-volt battery sets, short-wave receivers, all-wave sets, boosters, converters, power portables. Wunderlich circuits, and many others. Additional special circuits covering broadcasting equipment, etc., are available on request. Every set described in these pamphlets has been constructed and has been tested carefully, so that successful results are pre-assured if directions are followed. The pamphlets also constituted in the various necessary views. A complete list of parts is also furnished. The pamphlets also contain clear and concise assembly instructions and step-bytep withing directions. No. Title 91 & 92—1931 Delluxe 2-Volt Battery Set—for Air Cell or Storage Battery. 101 & 102—The Find-All Television Receiver—A Delivac Circuit 103 & 104—The Playmate—A Pentode Power Portable (A.C.) Three Tube. 109 & 110—The Find-All Four A.C.-D.C. Universal Portable (a.c.-d.c. feature). 111 & 112—The Find-All Six Auto-Radio Set—Ultra-Modern Automobile Receiver. 112 & 114—The Television and Broadcast. 113 & 114—The Television Broadcast Receiver—For Television and Broadcast. 114 & 118—Earphone 'Pal' Portable A.C.-D.C. Midset Set.—Two Variable Mu Pentodes and two Power Output Pentode Buttery Set. 115 & 116—1932 Triple-Pentode Battery Set. 116 & 120—The Quadruple Pentode A.C.-D.C. Midset Set.—Two Variable Mu Pentodes and two Power Output Pentodes Produce Superior. 121 & 120—The Universal A.C.-D.C. 'Buddy'' Ear-Pinest, Most Modern Battery Set. 122 & 125—The Universal A.C.-D.C. 'Buddy'' Ear-Pinest, Most Modern Battery Set. 123 & 124—The Pentode Auto-Radio Superhet. 124 & 125—The Dual Pentode with 44 and 42 (4.5 and 15) Tubes. 1 ALLIED ENGINEERING INSTITUTE 98 Park Place New York, N. Y. Suite 541-A Avail yourself now of the opreceive the free continue to receive re- than can be found in any radio text book on the subject. PARTIAL LIST OF CONTENTS Fundamental Principles of Radio—Ohm's Law— Discussion of New Tubes—Constructing a Triple Twin Amplifer—Constructing a Timy A.C.-D.C. Portable Receiver—All About Superheterodynes—Eliminating Man-made Static—Constructing a Two-tube Short Ware "Globetrotter" Receiver—Completely revised and Up-to date Radio Tube Chart—\$3.00 Prize Suggestions— Radio Kinks, Etc., Etc. WRITE TODAY. Enclose 4 cents for post-age. Treatise sent by return mail. RADIO TRADING CO. 100A Park Place New York City ## PATENTS—TRADE MARKS All cases submitted given personal attention by members of the firm. Information and booklet free LANCASTER, ALLWINE & ROMMEL PATENT LAW OFFICES Suite 434 815-15th St. N. W., Washington, D. C. www.americanradiohistory.com ## The "Beginners Twin" (Continued from page 9) tubes. The latter are unquestionably more sensitive, but they also cost more and require higher plate voltages, which means more "B" batteries. The "Beginner's Twin" as it stands is probably the best kind of introductory set for the beginner who can readily make changes and ginner, who can readily make changes and improvements in it as he becames more familiar with short wave technique. ### Detector and 1 Stage of A.F. The circuit, as shown in the accompanying diagram, is of the series-tickler type, with one stage of audio frequency amplification. This is a "sure fire" arrangement, absolutely devoid of trickiness as ment, absolutely devoid of trickiness as far as regeneration and oscillation are concerned. Two midget variable condensers are employed. One, controlled by the vernier drum dial, is the tuning condenser; the other, mounted directly on the front panel, is the regeneration control. The third knob on the front panel represents a combined on-off switch and filament rheostat. Since the tubes work on two volts, and a pair of dry cells in series develops three volts, the rheostat is turned up only part of the way. As the batteries wear out, the rheostat must be advanced further and further, until the batteries are entirely exhausted. ### Aerial Condenser Used The last adjustable unit is a tiny twoleaf trimmer condenser of the screw type, mounted on insulating studs next to the variable condensers. This is connected in the aerial circuit and must be adjusted for each plug-in coil to eliminate "dead spots" in the regenerative action. Different aerials will make the set behave differently in this regard, although dead spots under any conditions can always be overcome by opening the plates wide enough. enough. enough. The simple mechanical arrangement of the "Beginner's Twin" is made clear in the illustrations. Both front panel and sub-panel are stamped of strong steel, the latter being formed into a shallow box to accommodate the wiring and to form a solid foundation for the entire receiver. The variable condensers, plug-in coil socket and radio frequency choke form a little cluster at the left, while the tubes and the audio transformer are balanced neatly along the back. The wiring is short and follows the logical circuit positions. positions. Double binding post strips are mounted on the rear side of the chassis for aerial, ground and earphone connections. The battery connections are made by wires in a heavy braided cable, which is equipped with a special fuse block for the protection of both the filament and plate circuits. The Try-Mo panel and subpanel, which are available separately, are already drilled with all necessary holes, so no tedious preparation work is involved. ## Batteries and Phones Needed The photograph showing the author testing the "Beginner's Twin" also shows all the required accessories. These include a pair of high resistance earphones, two type 30 tubes, two No. 6 dry cells, and two 45-volt "B" batteries. For an aerial, an extra wire may simply be run to the same aerial already used with the family broadcast receiver. This seems to work quite well in most cases. An indework quite well in most cases. An independent aerial, totalling 100 to 100 feet in length, is of course more desirable. The usual cold water pipe "ground" is em-A natural question to ask about this simple receiver is, "What results can be expected?" Provided the build expected?" Provided the builder has patience, the set will provide many hours of interesting reception, not from foreign stations alone, but from hundreds of other stations of the classifications previously mentioned. Too many people have the idea that foreign stations will drop right in the first time a short wave set is turned on, and their enthusiasm suffers an unde- served setback when they fail to log London or Madrid immediately. Extravagant advertising to the contrary, the short waves are still tricky, and therein lies their greatest charm. Stations that are thunderously loud one week may be completely absent the next! At any event, the builder must not expect to master the fine points of short wave tuning in a few hours. First he will probably log the police stations around 122 meters, as these are easy to catch. Then there are the hundreds of amateurs on 160 and 80 meters, the airplane stations on approximately 53 and 95 meters, and finally the relay broadcasters on 49, 31 and 25 meters. Short wave broadcasting schedules are irregular and subject to quick changes, but there is always something doing below 200 meters and the careful listener is never without signals. without signals. Following is a complete list of the parts used in the "Beginner's Twin": ## List of Parts -Try-Mo foundation kit, consisting of 10% x8 inch panel and subpanel of same dimensions. -Hammarlund 150 mmf. midget variable condensers. -Hammarlund vernier drum dial. -Trimmer condenser for antenna cir- -10 ohm rheostat with built in switch. -100 mmf. grid condenser, with 3 meg. -Audio transformer (any ratio between 1—Audio transformer (any ratio between 3:1 and 6:1). 1—Set of Powertest plug-in coils. 3—Four-prong sockets (two for tubes, one for coil). 1—Fused battery cable. 2—Twin binding post strips. 1—Short wave R.F. choke, about 60 mh. Assorted hardware. ### Required Accessories: -Type 30 tubes. -No. 4 or No. 6 dry cells (preferably the latter). -"General" 45-volt "B" batteries. -Pair earphones, 2000 ohms. ## Coil Data Although factory-wound coils are avail- Although factory-wound coils are available at low prices, some constructors of the "Beginner's Twin" may want to wind their own. The winding data follow: Four prong forms, 1½ inches in diameter. No. 22 or 24 D.C.C. wire for grid coils, No. 26 or 28 S.C.C. wire for ticklers. Tickler at top of form, separated ¼ inch from grid winding. Start of tickler goes to right F pin; finish to P. Start of grid coil to G, finish to left F pin. Both coils wound in same direction. | Wavelength
range
(approximate) | Grid
Turns | Tickler
Turns | |--------------------------------------|---------------|------------------| | 16- 30 | 6 | 6 | | 29- 58
54-110 | 13
21 | 13
15 | | 103-200 | 54 | 27 | ## Free Booklet NATIONAL AGS WAVE SUPERHETERODYNE By JAMES MILLEN, M. E. By JAMES MILLEN, M. E. A fine 18-page booklet describing, with diagrams and photos, the new "communications type" National AGS Short Wave Superheterodyne Receiver. Some of the subjects discussed by Mr. Millen are "The Value'of an R. F. Pre-selector Stage Ahead of the First Detector—Selectivity and How It Is Achieved in a Superheterodyne—"Single Signal" Reception, with a Diagram and Discussion showing how to attain it—Improved Automatic Volume Control—Shielding of Various Stages—Using a Transposed Lead-in Aerial System to Reduce Noise. Also notes on servicing the I. F. amplifier, Beat Frequency Oscillator, R. F. First Detector and Oscillator. This valuable booklet will be sent to you free upon receipt of a postal card or letter addressed to the editor of SHORT WAVE CRAFT. Just state that you wish the booklet—"The National AGS Short Wave Superheterodyne." Send all requests to Short Wave Craft, Box 41, 98 Park Place, New York, N. Y. REG. PATENT ATTORNEY PROF. ENGINEER, WHAT IS YOUR INVENTION? Send me a simple sketch or model for
CONFIDENTIAL ADVICE ### SUPPRESSED W KNOWLEDGE OF THE AGES Hidden, denied, but not lost, is the miroculous wisdom of the ancients. Their methods of mental power in achieving SUCCESS and MASTERY IN LIFE are available TO YOU. Write for a FREE copy of the "Wisdom of the Sages" and learn how to receive this rare knowledge. MAKE YOUR LIFE ANEW. SCRIBE: L. T. A. ROSICRUCIAN BROTHERHOOD SAN JOSE CALIFORNIA ## SUPER TESTING KIT! Pencil Type with interchangeable Tip End. Kit complete with 2 Plus-InProngs, 2 Alligator Clips, 2 Needle Point Phone Tips, and 2 Spade Lugs, Long. Thin Pencil-Type handles for easy testing in tight places. Ideal for testing Long and Shortwave Sets. Coils, Condensers, Etc. Coils. Condensers, Complete kit. INTRODUCTORY PRICE NOW \$1.00 PREPAID AMERICAN RADIO HARDWARE CG. New York, N.Y. Just the Books You Need, See Page 58 ## Improved Doerle Receivers—Absolutely Fool Proof 15 TO 200 METERS WHAT THEY SAY! "Does All You Say" I have built the Doerle short wave receiver and I want to say it does all you say it will. J. Joseph Whalley, 401 Springdale Street, Cumberland, Md. Have just completed your Deerle two-tuber. I received the following on the loudspeaker: XDA Lake, GMB, VESOR, VESOR, KKG. WIXAZ, WZXAF, WZXAL, LAK, GMB, VESOR, VESOR, KKG. WOXF, WSXA, Bermud, Honoidla, Budapeat, Hungary, and Manufact. I would like to Pat a word in for the Doeric 12,500 mile receiver. I recommend this set to all "set wreckers" in a big way! Hoping that this set "perks" for all "hume" in a big way. H. J. Reilbotta, 1008 Beit Street, Baltimore, Md. Maurice Kraay, R. F. D. 1. Hammond, Ind. THERE have never been produced short-wave receivers which have taken the whole country by storm as much as the now famous DOERLE Receivers. Mr. Doerle described his first receiver, the now famous TWO TUBE 12,500 MILE RECEIVER in the December-January issue of SHORT WAVE CRAFT. You have seen the many letters published in SHORT WAVE CRAFT hadding this receiver to the skies, and for a good reason. It is a low-priced receiver, yet, pulls in short-wave stations from all over the world. REGULARLY, in practically any location, not only in this country, but anywhere. Thousands of experimenters have built their own, and have obtained mineulous results, as hundreds of glowing testimonial letters from radio fans testimonial eletters from radio fans testimonial eletters from radio fans testimonial eletters from radio fans testimonial betters from radio fans testimonial betters from radio fans testimonial betters from radio fans testimonial eletters testimo By special arrangement with the publishers of SHORT WAVE CRAFT, we are now in a Position to sell you these official receivers so that all short wave enthuslasts who ever wished to own either of these fine sets can now be sure to buy them without a question in their minds that they will perform 100%. It took a lot of labor, and much ingenuity to collect the correct parts to make sure that each receiver would work under all circumstances. This means that all the usual "bugs" have been ironed out by us in such a way that you may order every receiver with lull confidence, that in practically every location, anywhere, "they will do their stuff." ## ONLY FIRST CLASS PARTS USED It may be possible to buy the parts of the completed sets at a lower price. We admit this at once. But if you will look over our parts list, you will find that only first class material is used. We have done away with all losses. There is no "hand capacity." IN THESE TWO SETS ONLY THE BEST CONDENSERS—AND THAT MEANS HAMMARLUND—ARE USED. The sets could be produced for a considerable less amount if we used cheaper condensers. We have refrained from doing so because we wanted a first class product. And this soes for everything else in the sets. They are low in price. Yet the quality is excellent considering the low price. Thus, for instance, we are using Kurtz-Kasch disks because we found them excellent for their purpose, and as everyone knows, they are really first class verniers. The aluminum chassis is complétely drilled, ready for mounting parts, Panels are polished aluminum, on which the condensers and other parts are mounted. These banels do away with hand capacity. The plus-in coils are of Bakelite, wound with enamel wire for low losses. In short, despite the orceedingly low price of these sets, we give you quality. Bakelite sockets only are used. Even the aerial condensers are of the Micamold Equalking type. We have even included pin-tip lacks, rheoetate with "off" In short, you will be pleased not only with the business-like appearance, but with the performance as well. ## Only by making these sets in quantities can we afford to sell them at the extremely low prices quoted. Note the testimonials printed on this page. They will give you an idea what can be extected from these great sets. ### HOW DO THE TWO SETS DIFFER? The TWO TUBE 12,500 MILE SHORT-WAVE SET is intended to be used with headphones, although it is bringing in right along, stations on the loudspeaker. We, however, do not make such a claim. For instance, stations 5,000 and 10,000 miles away come in only on headphones. This set uses two 230 two-volt battery type tubes. The Improved THREE TUBE SIGNAL GRIPPER, as its name indicates, is a three tube set. It uses a type 34 serces grid R. F. amplifier followed by a Type 30 or generative detector and finally a type 30 A. F. Amplifier. It is a great deal more powerful than the smaller set and will bring in stations from great distances on the loudspeaker. A good magnetic loudspeaker should be used. Thus, for instance, stations from all over the country come in on the loudspeaker, but, of course, stations 12,000 miles distant require the use of earphones. The price of the two sets include a set of plug-in coils. The price of the two sets include a set of plug-in coils. Both sets are operated from ordinary dry cells. The "B" battery supply can be either 90 volts or 135 volts for the THREE TUBE SIGNAL GRIPPER. For the TWO TUBE SET, 90 volts is sufficient. Both sets tune exceedingly easy, and the oscillation control is always under full control of the operator. The vernier dials are accurate so that stations can be logged and found in their allotted positions every time you use the set. ### OUR OWN TESTS Both sets have been tested by us, and we found that they do all and more claimed by Mr. Doerle, and other enthusiasts who built the sets, especially since they have been improved. We refrain from giving you the actonishing list of stations which we ourselves have logged because we do not wish to let our enthusiasm run away with us, and because you might not believe the actual results accomplished with this set. We much rather have others talk about the results. Incidentally, we have, as yet, to receive a single complaint on these sets, although we sold a large quantity of parts for both of them. A Doerle Enthusiast I have just completed my two-tube Doerle, and it surely is a great receiver! It works fine on all the wavebands. Nobody could wish for any better job than this one. I can get WSXK and WSXA to work on the londspeaker at night, and the code elastions come in with a wallop behind them. Samuel E. Smith, Lock Box 241, Grayling, Migh. Two Tube 12,500 Mile Doerle Receiver Front View No. 2140. TWO TUBE 12.500 MILE DOERLE SHORT WAVE RECEIVER, completely wired and tested as per above apecifications \$8.90 No. 2141. TWO TUBE 12.500 MILE DOERLE SHORT WAVE RECEIVER AIT. with all parts as specified above, but not wired, with hluerint connections and flustructions for operation. Complete shipping weight 81bs. YOUR PRICE No. 2142. COMPLETE ACCESSORIES, including the followings 2 six months guaranteed Nontron type No. 230 tubes: consect of No. 1078 Brandes Michael Leadphones; 2 No. 4 standard dry cells. Alcheel Leadphones; 2 No. 4 tubes of the volt "9" hosteries, complete, slipping weight 22 lbs. YOUR FRICE Wire. etc. Shipping weight 7 lbs. No. 2143. Improved THREE TUBE DOERLE S11.85 ENT. completely Durant Prove to the Court of ORDER FROM Send money order or certified check. C.O.D. only if 20% remittance accompanies all orders. Order NOW—TODAY FREE 104-page Radio and Short Wave Treatise; 100 hook-ups, 1,000 Illustrations. Enclose 4c for postage. Treatise sent by return mail. RADIO TRADING COMPANY, 100A Park Place, New York City ## GUARANTEE ## PLEASE NOTE We are short wave specialists. Please understand that the two sets here described are not the only ones which wa produce. We can furnish parts, in kit form of practically any short wave receiver described in SHORT WAVE CEAFT or other radio magazines. Get our prices frest. We will save you mongy. ## They Have Copied Everything— ## Except TRIAD Quality IT IS WRITTEN— "Imitation is the sincerest form of flattery" ## TRĪAD Appreciates the compliment it receives each month from other tube manufacturers who have copied our sales plan—our method of advertising—our discount schedules # $oldsymbol{TRar{I}AD}$ Was first to recognize the Service Man TRĪAD TRĪAD Was first to make double-tested tubes Was first to offer a plan which really makes money for the dealer and Service Man OTHERS have made every effort to do the same thing ## BUT THEY HAVE NOT BEEN ABLE TO DUPLICATE ## TRIAD-Quality ## TUBES ### A NEW DEAL Some of our Service Men and Dealers have wanted to buy regular Triad Tubes to meet ordinary competition- We have worked out a special proposition with most attractive discounts, and will be glad to supply the details upon request. With regular Triads you can beat any kind of competition, Triad Dealers and Service Men everywhere have sold many thousands of these tubes,-they are making money-there hasn't been a single complaint. Mail the coupon today and learn how you can sell these super-grade tubes at a real profit. We protect you in your territory and you are sure of all of the inducements offered by other manufacturers, plus quality which is in a class by itself. GET THE
FACTS1 ## Manufacturing Co. Pawtucket, R. I. Please send me the outline of the TRIAD Sales Plan for Dealers and Service Men. Address ...State.. My letterhead or business card is attached # Announcing the New Idea in DX The new R-9 has what one might say—a dual personality. In the hands of an expert commercial operator, the high sensitivity brings in CW and voice signals, impossible to hear on many receivers, with any volume you want. It has been a sensation to every "Ham" who worked it on the air. In the hands of the "dyed in the wool" DXer it has filled the bill 100%. He can be the proud possessor of the most powerful strictly short wave receiver which he can demonstrate to his friends without interrupting the family broadcast receiver. If you could bring in just half of the stations we bring in daily, regular as clock work, you would be just as enthusiastic as we are. Don't forget you have the choice of the famous DeLuxe SW-33 all wave, if you prefer, which radio engineers, Army officers, and millionaires claim the greatest receiver they ever operated. The new super powered DeLuxe SW-33 cuts like a knife, absolutely 10KC from the powerful locals. Sensitivity beyond practical measurement and a new fidelity hard to equal in the finest amplifiers. Just drop me a line and tell me what you want. If you are a licensed operator, please give call letters. I will send complete information on your request. Cordially yours, Al to the acciston W. H. Hollister, President. ## LINCOLN RADIO CORPORATION, 333 S. Wood St., Chicago | LINCOLN RADIO CORPORATION Dept. E, 333 S. Wood St., Chicago U. S. A. | LINCOLN | |--|------------------| | Please send me Free Technical description of the | | | Name | Desuxe Receivers | | Street | Dejune necesives | | City State | |